PyTorch GPU环境配置 win11+NVIDIA GeForce RTX3060 Laptop GPU

一、Anaconda安装

anaconda下载地址清华镜像源下载

安装的时候跳过vscode

 添加路径

 二、安装显卡驱动

驱动下载地址

下载之后检查gpu运行情况

ctrl+alt+delete快捷键进入任务管理器

 三、安装CUDA

cuda下载地址

 

 

 

 

 四、下载CuDNN

cudnn下载地址

 

 

将下载好的cudnn这三个文件夹复制粘贴到 CUDA路径下 

 

添加路径

 五、验证cuda安装成功

验证cuda是否安装成功,首先win+R启动cmd,进入到CUDA安装目录下的 ...\extras\demo_suite,然后分别运行bandwidthTest.exe和deviceQuery.exe,应该得到图28,返回Result=PASS表示cuda安装成功。

 

 

 六、下载pytorch

 

 pytorch下载命令下对应的cuda

出现这个报错的话 可能是网络代理冲突 关掉科学上网

 

 

### 安装和配置 CUDA 环境 对于 NVIDIA GeForce RTX 3050 Ti Laptop GPU 的 CUDA 配置,需特别关注兼容性和安装细节。 #### 显卡与 CUDA 版本匹配 NVIDIA GeForce RTX 3050 Ti 笔记本电脑 GPU 支持 CUDA 计算能力 sm_86。然而,在某些情况下可能会遇到不兼容警告,这是因为 PyTorch 或其他依赖库可能尚未完全适配较新的显卡架构[^1]。 为了规避此问题并确保稳定运行,建议采用特定版本组合来构建开发环境: - 使用 `pip` 命令指定较低版本的 PyTorch 和对应的 CUDA 工具包版本进行安装: ```bash pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 ``` 上述命令会下载适用于 CUDA 11.3 的 PyTorch 及其相关组件,该版本已被验证能够良好支持 RTX 3050 Ti 这样的新型号笔记本显卡[^3]。 #### 检查安装情况 完成安装之后可以通过 Python 脚本来确认 GPU 是否被正确识别以及 CUDA 功能是否可用: ```python import torch print(f"CUDA Available: {torch.cuda.is_available()}") print(f"Current Device: {torch.cuda.current_device()}") print(f"Device Name: {torch.cuda.get_device_name(torch.cuda.current_device())}") ``` 如果一切正常,则应看到类似于以下输出的信息: ``` CUDA Available: True Current Device: 0 Device Name: NVIDIA GeForce RTX 3050 Ti Laptop GPU ``` 通过以上方法可以在配备有 NVIDIA GeForce RTX 3050 Ti Laptop GPU 的设备上顺利搭建起适合深度学习应用需求的 CUDA 开发平台。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值