逻辑回归与之前的线性回归虽然名字类似,但其实是一种分类的方法,如分辨是否为垃圾邮件(是或否),输入肿瘤特征分辨是良性还是恶性等。因为最终的类别(eg.只有是和否两种情况)已经确定,我们只需要将不同的输出结果进行分类,这就需要一个阈值(eg. 0.5),以此为界限进行分类。
如果参考之前线性回归的假说ℎ𝜃 (𝑥),拟合的线受到数据影响,同样的阈值可能产生不同的结果,因此逻辑回归提出了新的假设:
ℎ𝜃 (𝑥)使用sigmoid函数,输出范围在0~1之间,意义是对于给定的输入变量,根据选择的参数计算输出变量=1 的可能性,
即ℎ𝜃 (𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃)。在二分类问题中,分类结果为0/1,所以有 𝑃(𝑦 = 1|𝑥; 𝜃)+ 𝑃(𝑦 = 0|𝑥; 𝜃)=1
决策边界:我们假设
ℎ𝜃 (𝑥)≥0.5→y=1 ℎ𝜃 (𝑥)<0.5→y=0
ℎ𝜃 (𝑥)=g(𝜃’𝑥)≥0.5 由图像可解得需要𝜃’𝑥≥0,由此式得到决策边界。
代价函数:
梯度下降