吴恩达机器学习笔记 逻辑回归Logistics Regression

  逻辑回归与之前的线性回归虽然名字类似,但其实是一种分类的方法,如分辨是否为垃圾邮件(是或否),输入肿瘤特征分辨是良性还是恶性等。因为最终的类别(eg.只有是和否两种情况)已经确定,我们只需要将不同的输出结果进行分类,这就需要一个阈值(eg. 0.5),以此为界限进行分类。

  如果参考之前线性回归的假说ℎ𝜃 (𝑥),拟合的线受到数据影响,同样的阈值可能产生不同的结果,因此逻辑回归提出了新的假设:

  ℎ𝜃 (𝑥)使用sigmoid函数,输出范围在0~1之间,意义是对于给定的输入变量,根据选择的参数计算输出变量=1 的可能性,

即ℎ𝜃 (𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃)。在二分类问题中,分类结果为0/1,所以有 𝑃(𝑦 = 1|𝑥; 𝜃)+ 𝑃(𝑦 = 0|𝑥; 𝜃)=1

 

决策边界:我们假设

          ℎ𝜃 (𝑥)≥0.5→y=1        ℎ𝜃 (𝑥)<0.5→y=0

 

ℎ𝜃 (𝑥)=g(𝜃’𝑥)≥0.5     由图像可解得需要𝜃’𝑥≥0,由此式得到决策边界。

代价函数:

梯度下降


 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值