Σn^k的递推式

知乎上看到的一个方法。觉得很有意思,打算用自己的语言重新写一下。

(67 封私信 / 80 条消息) 我知道 ∑n,∑n²,∑n³ 的结果,那是否能够求出 ∑n^k(k 为正整数)的一般形式通项公式? - 知乎 (zhihu.com)https://www.zhihu.com/question/369313777/answer/998250791

f(k,n)=\sum_{i=0}^n i^k,n\geq 0,k\geq 1

f(k,n+1)=f(k,n)+(n+1)^k        (*)        

n\geq0,k\geq0时成立。

推广一下,假设(*)式能在另一个自变量取实数的函数g(k,n)上定义域内处处成立,且g(k,n)处处可导

则当k\geq 2时,

\frac{\partial g(k,n)}{\partial n}=\frac{\partial g(k,n-1)}{\partial n}+kn^{k-1}

=\frac{\partial g(k,n-2)}{\partial n}+k(n-1)^{k-1}+kn^{k-1}

n取多少,就将以上过程重复多少次,之后:

=...=\frac{\partial g(k,n)}{\partial n}|_{n=0}+k(1^{k-1}+2^{k-1}+...+n^{k-1})=C+kg(k-1,n)

其中,C是g(k,n)对n的导数在n=0处的值,因而是一个常数。

因此,\large g(k,n)=Cn+\int_0^n kg(k-1,x)dx.取n=1可解出C,代入,得到:

g(k,n)=n\cdot (1-\int^1_0kg(k-1,x)dx)+\int_0^n kg(k-1,x)dx

在k>1时成立。

下面进行验证。我们已经知道g(1,n)存在:g(1,n)=\frac{n^2}{2}+\frac{n}{2}

因此,g(2,n)=\int_0^nx^2+xdx+n(1-\int_0^1x^2+xdx)=\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值