浅析如何防止规划算法陷入局部最优

本文分析了最优算法如A*如何避免局部最优,并聚焦于非最优算法RRT如何处理这个问题。RRT的随机性使其在路径规划中避免局部最优,但可能引入误差。当遇到局部最优时,可以通过添加势场、临时取消势场或设定特定前进规则来跳出。这些策略在复杂环境中需要权衡确定性和随机性的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,具备最优性的算法并不会陷入局部最优。例如A*算法,基于广度优先算法并结合启发式,能找到最优路线,显然不会陷入局部最优。

那么,针对非最优算法,如何避免陷入局部最优呢?其中一个重要思想就是,增加算法的随机性。比如RRT算法,随机性非常强,搜索树随机扩散(或在某些实际的运动约束下随机扩散)直到找到目标点。我认为并不需要担心RRT算法陷入局部最优解,更需要担心的是它与最优解之间的误差太大。为了对RRT的扩散进行引导,可以加入人工势场,但是在某些复杂的势场环境下,规划算法又可能陷入局部最优。所以,确定性和随机性是一个需要权衡的问题。

假如陷入局部最优,该怎么办呢?再拿RRT+人工势场法举例。当陷入局部最优,一是可以再叠加一个势场,把点引导出来;二是可以暂时取消原势场,暂时用RRT随机搜索跳出局部最优;三是使用预先设置的前进规则,比如顺时针绕行……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值