DIN

DIN的出发点在于如果用户的历史购买记录中有类似的商品,那么广告推荐在处理用户序列数据时,应该着重注意这些相似的商品或者说有关联的商品。这种着重注意体现在注意力机制,模型应该自适应的去捕捉用户的兴趣变化,注意力其实也就是权重的加权,DIN设计了一个 local activation unit,利用候选商品和历史问题商品之间的相关性计算出权重。这里面是一个前馈神经网络,输入是用户历史行为商品和当前的候选商品, 输出是它俩之间的相关性, 这个相关性相当于每个历史商品的权重,把这个权重与原来的历史行为embedding相乘求和就得到了用户的兴趣表示,输入除了历史行为向量和候选广告向量外,还加了一个它俩的外积操作,作者说这里是有利于模型相关性建模的显性知识。这里有一点需要特别注意,就是这里的权重加和不是1, 准确的说这里不是权重, 而是直接算的相关性的那种分数作为了权重,也就是平时的那种scores(softmax之前的那个值),这个是为了保留用户的兴趣强度。

# DIN网络搭建
def DIN(feature_columns, behavior_feature_list, behavior_seq_feature_list):
    """
    这里搭建DIN网络,有了上面的各个模块,这里直接拼起来
    :param feature_columns: A list. 里面的每个元素是namedtuple(元组的一种扩展类型,同时支持序号和属性名访问组件)类型,表示的是数据的特征封装版
    :param behavior_feature_list: A list. 用户的候选行为列表
    :param behavior_seq_feature_list: A list. 用户的历史行为列表
    """
    # 构建Input层并将Input层转成列表作为模型的输入
    input_layer_dict = build_input_layers(feature_columns)
    input_layers = list(input_layer_dict.values())
    
    # 筛选出特征中的sparse和Dense特征, 后面要单独处理
    sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), feature_columns))
    dense_feature_columns = list(filter(lambda x: isinstance(x, DenseFeat), feature_columns))
    
    # 获取Dense Input
    dnn_dense_input = []
    for fc in dense_feature_columns:
        dnn_dense_input.append(input_layer_dict[fc.name])
    
    # 将所有的dense特征拼接
    dnn_dense_input = concat_input_list(dnn_dense_input)   # (None, dense_fea_nums)
    
    # 构建embedding字典
    embedding_layer_dict = build_embedding_layers(feature_columns, input_layer_dict)

    # 离散的这些特特征embedding之后,然后拼接,然后直接作为全连接层Dense的输入,所以需要进行Flatten
    dnn_sparse_embed_input = concat_embedding_list(sparse_feature_columns, input_layer_dict, embedding_layer_dict, flatten=True)
    
    # 将所有的sparse特征embedding特征拼接
    dnn_sparse_input = concat_input_list(dnn_sparse_embed_input)   # (None, sparse_fea_nums*embed_dim)
    
    # 获取当前行为特征的embedding, 这里有可能有多个行为产生了行为列表,所以需要列表将其放在一起
    query_embed_list = embedding_lookup(behavior_feature_list, input_layer_dict, embedding_layer_dict)
    
    # 获取历史行为的embedding, 这里有可能有多个行为产生了行为列表,所以需要列表将其放在一起
    keys_embed_list = embedding_lookup(behavior_seq_feature_list, input_layer_dict, embedding_layer_dict)
    # 使用注意力机制将历史行为的序列池化,得到用户的兴趣
    dnn_seq_input_list = []
    for i in range(len(keys_embed_list)):
        seq_embed = AttentionPoolingLayer()([query_embed_list[i], keys_embed_list[i]])  # (None, embed_dim)
        dnn_seq_input_list.append(seq_embed)
    
    # 将多个行为序列的embedding进行拼接
    dnn_seq_input = concat_input_list(dnn_seq_input_list)  # (None, hist_len*embed_dim)
    
    # 将dense特征,sparse特征, 即通过注意力机制加权的序列特征拼接起来
    dnn_input = Concatenate(axis=1)([dnn_dense_input, dnn_sparse_input, dnn_seq_input]) # (None, dense_fea_num+sparse_fea_nums*embed_dim+hist_len*embed_dim)
    
    # 获取最终的DNN的预测值
    dnn_logits = get_dnn_logits(dnn_input, activation='prelu')
    
    model = Model(inputs=input_layers, outputs=dnn_logits)
    
    return model
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值