trick1---实现tensorflow和pytorch迁移环境教学

本文详细介绍了如何在不同电脑间迁移已配置好的TensorFlow和PyTorch环境,包括查看现有环境、查询包位置、替换lib文件及激活环境的步骤。通过此教程,用户可以在新设备上快速恢复深度学习开发环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关文章:

【一】tensorflow安装、常用python镜像源、tensorflow 深度学习强化学习教学     

【二】tensorflow调试报错、tensorflow 深度学习强化学习教学

【三】tensorboard安装、使用教学以及遇到的问题


trick1---实现tensorflow和pytorch迁移环境教学


 

tensorflow和pytorch迁移环境教学,实现奖已创建好的pytorch和tensorflow编译环境包到别的电脑上去,并进行激活使用。

  • 第一步:查看现有虚拟环境,看编译环境下有没有tensorflow和torch,如果有将已配置好的包lib所有内容拷贝备份即可。
激活环境
conda activate tf2
python or ipython
import tensorflow
import torch
  • 第二步 查询tensorflow和pytorch包的位置

看到对应的编译环境

  • 第三步 查询版本和路径
(base) C:\Users\xxx>conda activate tf2

(tf2) C:\Users\xxx>python
Python 3.7.10 (default, Feb 26 2021, 13:06:18) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
2021-04-06 21:00:46.661044: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2021-04-06 21:00:46.664907: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
>>> import torch
>>> import tensorflow as tf
>>> print(tf.__version__)
2.4.1
>>> print(torch.__version__)
1.5.1
>>> print(torch.__path__)
['H:\\Anaconda3-2020.02\\envs\\tf2\\lib\\site-packages\\torch']
>>> print(tf.__path__)
['H:\\Anaconda3-2020.02\\envs\\tf2\\lib\\site-packages\\tensorflow', 'H:\\Anaconda3-2020.02\\envs\\tf2\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\api\\_v2', 'H:\\Anaconda3-2020.02\\envs\\tf2\\lib\\site-packages\\tensorboard\\summary\\_tf', 'H:\\Anaconda3-2020.02\\envs\\tf2\\lib\\site-packages\\tensorflow', 'H:\\Anaconda3-2020.02\\envs\\tf2\\lib\\site-packages\\tensorflow\\_api\\v2']
  • 第四步:替换lib文件下的所有内容 (注意:如果你怕报错就把原来的更换一下名字,以免以后找不回)

    在第二台电脑中找到anaconda的编译环境或者创建的虚拟环境文件目录,替换lib即可

注意:保险做法可以先重命名为Lib_old 先放着

  • 第五步 重新打开终端激活环境

将复制到第二台电脑的包lib文件放置在tensorflow编译环境中,并进行激活:显然,成功激活。

重复第一步和第三步看看激活成功了不。


具体快速安装可见下面链接有详细安装教程。

https://blog.csdn.net/sinat_39620217/article/details/115462155?spm=1001.2014.3001.5501

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值