
本文概述了多智能体强化学习(MARL)的行为分析和通信学习两个重要方向。行为分析探讨了如何将单智能体强化学习算法应用于多智能体环境,通过论文《Multiagent Cooperation and Competition with Deep Reinforcement Learning》和《Cooperative Multi-Agent Control Using Deep Reinforcement Learning》展示其在协作与竞争环境中的应用。通信学习方面,介绍了《Learning to Communicate with Deep Multi-Agent Reinforcement Learning》等论文,强调智能体间的信息交互学习,以及如何通过反馈循环和注意力机制来提升合作效率。