冈萨雷斯数字图像处理学习7:图像分割 边缘连接和边界检测和阈值处理

本文介绍了图像处理中的边缘连接和边界检测方法,包括局部处理、区域处理和使用霍夫变换的全局处理。对于阈值处理,讨论了全局阈值、局部阈值、动态阈值和可变阈值处理,并提到了预处理和图像平滑对去除噪声的重要性。Otsu方法在全局阈值处理中的应用以及利用边缘和图像分块改善分割效果也是讨论的重点。
摘要由CSDN通过智能技术生成

三边缘连接和边界检测

通常情况下,检测出的像素并不能完全描述边缘特性,需要紧接连接算法,才能组合成有意义的边缘或区域边界。

1局部处理

2区域处理

按给出的顺序追踪这些点

3使用霍夫变换的全局处理

通常所说的霍夫线变换和圆变换,将直角坐标系转换到极坐标系下,在极坐标系下相交的直线在直角坐标系系下表示通过一条直线的点。

四阈值处理

包括全局阈值处理,在整幅图片设定阈值,对每个像素点判断就叫全局;阈值可变的情况有事叫局部阈值处理;如果阈值取决于空间坐标(x,y)本身,称为动态阈值处理或自适应阈值处理。

噪声对阈值处理的影响还是很大的,所以要进行预处理。

光照和反射起到了核心作用,如果控制不了这些参数时。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值