Benders decomposition
目录
2.2 benders分解的核心——子问题和对偶子问题的分析
benders分解本质是:
(1)将问题分解为松弛主问题和子问题
(2)子问题不断返回可行割和最优割,然后把这些割添加到松弛主问题中去。
直到子问题提供的上界UB和主问题提供的LB相等,此时得到最优解。(其实此时松弛主问题基本等同于原问题了。)
1.benders的分类
benders目前有三种:
(1)经典的benders分解 Classical Benders
1960年由benders提出;
主问题是只保留整数变量的松弛主问题,子问题是线性规划问题。
(2)基于整数的benders Integer-based Benders
1993年由研究VRP的加拿大大佬提出;
子问题不再是线性规划了,因此不能再用对偶线性规划的性质了。
但是仍然可以根据套路(固定公式)添加可行割和最优割。
(3)基于逻辑的benders Logic-based Benders
是最新的,2019年提出的(我不是很确定)?
需要根据问题而定制,不再有固定的公式套用了。
总结一下,前两种是只要符合形式,就可以套用,是通用性框架;而第三种的基于逻辑的benders是定制化方案,不再是通用性框架了。
一般我们经常可以看到的是经典的benders,此处我也结合经典的benders梳理下思路。
2. 经典的benders分解
2.1 经典的benders分解注意点
假设是min问题,y是整数变量,x是实数变量。
再来回顾下benders的主要思路:
(1)将问题分解为master problem松弛主问题(只包含y)和sub problem子问题(只包含x)
(2)主问题给子问题一个的整数解y(此时子问题拿到y以后就变成了一个仅仅包含x的函数),然后子问题返回可行割或最优割,然后把这些割添加到松弛主问题中去。不断循环,直到上下界相等,问题求解结束。
注:
可行割是切除不可行的解;最优割是让解变得更好。
从主要思路里可以看到:
(1)benders是不断添加割的,割就是割平面,也就是不断加约束,也被叫做行生成。利用的原理是,最优解可能不需要全部的约束,可能只需要一部分就可以了。因此我们寻找这些起作用的即可,一个个添加,直到问题求解。
(2)主问题不断给子问题传输整数解y,给了若干次(部分的整数解)就可以求解结束,不必再用枚举的方式枚举所有
Benders分解:理论与应用

Benders分解是一种解决混合整数线性规划问题的方法,通过将问题拆分为松弛主问题和子问题,逐步添加可行割和最优割来逼近最优解。经典Benders分解中,主问题包含整数变量的松弛形式,子问题是线性规划。这一过程涉及行生成和部分枚举策略,降低了问题的维度,简化了解决复杂优化问题的难度。
最低0.47元/天 解锁文章
5288





