图信号处理之图拉普拉斯矩阵的含义

图拉普拉斯矩阵 L L L定义为图的度矩阵 D D D减去图的(加权)邻接矩阵 W W W。这一定义来自谱图论,在图信号处理理论中也非常常见。然而,图拉普拉斯矩阵为什么如此定义?它有什么含义?它与经典信号处理中的拉普拉斯算子有什么关系?这篇博文致力于回答关于图拉普拉斯矩阵的这几个问题。
本文将解释图信号的梯度和散度的定义,给出图拉普拉斯矩阵的另一个定义,并最终解释 L = D − W L=D-W L=DW的含义。为了便于理解,本文将以一个图信号的例子贯穿始终。

图信号也可以看作图函数

图信号是一种描述非结构化数据的数据表示形式。经典的数字信号处理的处理对象是时间信号,由一系列不同时间的采样点组成。这其中暗含着一种非常规则的数据结构,即每个采样点都按照时间顺序规则排列。然而,实际中我们常常需要处理非规则结构的数据,这些数据不仅包括本身的数值信息,还包括数据之间的结构关联信息。例如,交通网络,无线传感器网络,社交网络等等。图信号打破了经典数字信号处理的规则结构局限,致力于处理图结构上的信号。
例如我们关注如下图信号。
在这里插入图片描述
这个图信号由向量 f = [ 3 , 5 , − 2 , 1 , − 5 ] T \boldsymbol{f}=[3,5,-2,1,-5]^T f=[3,5,2,1,5]T表示。与经典数字信号不同的是,这个图信号向量依托于特定的图 G = { V , E , W } \mathcal{G}=\{\mathcal{V},\mathcal{E},W\} G={ V,E,W},其中 V = { A , B , C , D , E } \mathcal{V}=\{A,B,C,D,E\} V={ A,B,C,D,E}为节点集合, E = { A B , A C , B D , C D , D E , B E } \mathcal{E}=\{AB,AC,BD,CD,DE,BE\} E={ AB,AC,BD,CD,DE,BE}为边集合, W W W为图的邻接矩阵。
W = ( 0 5 3 0 0 5 0 0 7 2 3 0 0 1 0 0 7 1 0 4 0 2 0 4 0 ) W=\left(\begin{array}{ccccc} 0 & 5 &3 & 0 & 0 \\ 5 & 0 & 0 & 7 & 2 \\ 3 & 0 & 0 & 1 & 0 \\ 0 & 7 & 1 & 0 & 4 \\ 0 & 2 & 0 & 4 & 0 \end{array}\right) W=0530050072300100710402040

以上即为图信号的表示方法。
下面我们解释本节的标题:图信号也可以看做图函数。
函数可以理解为由定义域向值域的映射。图信号与之相同,可以看作由节点域向实数域的映射 γ : V → R \gamma:\mathcal{V} \rightarrow\mathbb{R} γVR,即每个节点对应一个实数值。本例子中,映射 γ \gamma γ: 节点 A → 3 A \rightarrow3 A3, 节点 B → 5 B \rightarrow5 B5, 节点 C → − 2 C \rightarrow-2 C2, 节点 D → 1 D \rightarrow1 D1, 节点 E → − 5 E \rightarrow-5 E5.
由于本文主要关注图上的拉普拉斯算子,这是一个函数上的概念,因此接下来我们使用“图函数”这个名词。需要注意的是,这里的“图函数”就是“图信号”,只是在本文中我们不再区分这两个概念。

拉普拉斯算子 = 梯度的散度

对于函数 g ( x , y , z ) g(x,y,z) g(x,y,z)来说,将拉普拉斯算子 ∇ 2 \nabla^2 2作用于函数 g ( x , y , z ) g(x,y,z) g(x,y,z),就等价于求函数 g ( x , y , z ) g(x,y,z) g(x,y,z)的梯度的散度。
函数 g ( x , y , z ) g(x,y,z) g(x,y,z)为标量函数,其梯度为矢量场 ∇ g = ∂ g ∂ x ⋅ i ⃗ + ∂ g ∂ y ⋅ j ⃗ + ∂ g ∂ z ⋅ k ⃗ \nabla g=\frac{\partial g}{\partial x} \cdot \vec{i}+\frac{\partial g}{\partial y} \cdot \vec{j}+\frac{\partial g}{\partial z} \cdot \vec{k} g=xgi +ygj +zgk , 其中每个点处的矢量都表示函数 g ( x , y , z ) g(x,y,z) g(x,y,z)在该点的梯度,方向指向函数在此点变化最快的方向,大小表示变化的快慢。
对梯度 ∇ g \nabla g g求散度,得到标量场,表示每个点处的梯度矢量是发散还是汇聚,散度为负值则表示此处的函数梯度矢量向内汇聚,散度为正值则表示此处的函数梯度矢量向外发散。 ∇ ⋅ ∇ g = ∇ 2 g \nabla\cdot\nabla g=\nabla^2 g g=2g,此处的 ∇ 2 \nabla^2 2就被称为拉普拉斯算子。
总结起来,拉普拉斯算子即为求函数的梯度的散度。

为了解释图拉普拉斯矩阵,我们首先关注图信号的梯度,再关注图信号梯度的散度。

图信号的梯度

图信号理论中的许多概念都由经典数字信号处理推广获得。因此,为了获得图函数的梯度,我们首先回顾经典函数的梯度,并将其推广至图函数中。
经典函数 g ( x , y , z ) g(x,y,z) g(x,y,z)的梯度为 ∇ g = ∂ g ∂ x ⋅ i ⃗ + ∂ g ∂ y ⋅ j ⃗ + ∂ g ∂ z ⋅ k ⃗ \nabla g=\frac{\partial g}{\partial x} \cdot \vec{i}+\frac{\partial g}{\partial y} \cdot \vec{j}+\frac{\partial g}{\partial z} \cdot \vec{k} g=xgi +ygj

  • 18
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 16
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值