leetcode - 238. Product of Array Except Self

给定一个整数数组,返回一个新的数组,新数组中的每个元素是原数组中所有其他元素的乘积。要求算法在O(n)的时间复杂度内完成,且不能使用除法。两种解决方案分别使用了O(n)的空间复杂度和O(1)的空间复杂度。

Description

Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i].

The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

You must write an algorithm that runs in O(n) time and without using the division operation.

Example 1:

Input: nums = [1,2,3,4]
Output: [24,12,8,6]

Example 2:

Input: nums = [-1,1,0,-3,3]
Output: [0,0,9,0,0]

Constraints:

2 <= nums.length <= 10^5
-30 <= nums[i] <= 30
The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

Follow up: Can you solve the problem in O(1) extra space complexity? (The output array does not count as extra space for space complexity analysis.)

Solution

space o(n)o(n)o(n) solution

Use separate dicts to store the prefix product and suffix product, then the result will be pre_prod[i] * suf_prod[i]

Time complexity: o(n)o(n)o(n)
Space complexity: o(n)o(n)o(n)

space o(1)o(1)o(1) solution

Use returned list as the pre_prod, then directly times the numbers from the end to the start.

Time complexity: o(n)o(n)o(n)
Space complexity: o(1)o(1)o(1)

Code

space o(n)o(n)o(n) solution

class Solution:
    def productExceptSelf(self, nums: List[int]) -> List[int]:
        prod_before = [1]
        for each_num in nums[:-1]:
            prod_before.append(prod_before[-1] * each_num)
        prod_after = [1]
        for i in range(len(nums) - 1, 0, -1):
            prod_after.append(prod_after[-1] * nums[i])
        prod_after.reverse()
        res = []
        for i in range(len(prod_before)):
            res.append(prod_before[i] * prod_after[i])
        return res

space o(1)o(1)o(1) solution

class Solution:
    def productExceptSelf(self, nums: List[int]) -> List[int]:
        res = [1] * len(nums)
        pred_prod = 1
        for i in range(1, len(nums)):
            pred_prod *= nums[i - 1]
            res[i] *= pred_prod
        pre_prod = 1
        for i in range(len(nums) - 2, -1, -1):
            pre_prod *= nums[i + 1]
            res[i] *= pre_prod
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值