Python数据分析实战-实现Kruskal-Wallis H检验(附源码和实现效果)

本文介绍了如何在Python中使用scipy.stats模块进行Kruskal-WallisH检验,一种非参数方法,用于比较多个独立样本的分布差异。作者背景是数据挖掘研究者,承诺分享Python、机器学习和深度学习基础知识,并提供相关资源作为激励。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现功能

当需要比较多个(大于两个)独立样本之间的差异时,可以使用非参数的Kruskal-Wallis H检验。Kruskal-Wallis H检验是一种非参数的方差分析方法,用于检验多个独立样本是否来自于相同的总体分布。

在Python中,你可以使用scipy.stats模块中的kruskal函数来执行Kruskal-Wallis H检验。

实现代码

from scipy.stats import kruskal

# 多组独立样本的数据
group1 = [1, 2, 3, 4, 5]
group2 = [6, 7, 8, 9, 10]
group3 = [11, 12, 13, 14, 15]

# 执行Kruskal-Wallis H检验
statistic, p_value = kruskal(group1, group2, group3)

# 打印结果
print("Kruskal-Wallis H statistic:", statistic)
print("p-value:", p_value)

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值