这是我的第358篇原创文章。
一、引言
Dify是一个功能强大的AI工作流平台,我们能够利用此平台实现我们自己个性化工具!
a.打开官网:https://cloud.dify.ai/signin
b.使用账号登录,选gmail,github账号都可以
Dify 工作流分为两种类型:
-
Chatflow:面向对话类情景,包括客户服务、语义搜索、以及其他需要在构建响应时进行多步逻辑的对话式应用程序。
-
-
以客户服务为例:
-
通过将 LLM 集成到您的客户服务系统中,您可以自动化回答常见问题,减轻支持团队的工作负担。LLM 可以理解客户查询的上下文和意图,并实时生成有帮助且准确的回答。
-
-
-
Workflow:面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。
二、实现过程
工作流逻辑:根据学生输入的各科目的分数,进行评分。如果语文和数学两门成绩都在99以上,则评为‘顶级学霸’(代码执行),如果语文和数学两门成绩都在80分以上,则评为“优秀学生”(代码执行),否则评为“还需继续努力”(代码执行)。
1、选择工作室-选择空白应用
这里我选择工作流的应用类型,名称设置为:Q老师评分,描述设置为:评分小助手。
2、编排工作流
工作流就是一个流程图,包含开始节点、中间处理节点、结束节点,开始节点一般需要有输入字段,结束节点一般是一个分支的结束,是输出结果,需要有输出变量,中间节点一般是处理的逻辑。
开始节点:
中间条件分支节点:
中间代码执行节点:
结束节点:
完整的工作流编排如下:
3、调试
点击运行-输入变量值-点击开始运行:
可以看出输出了总分和评价:
可以看一下输入和输出的详情:
可以点击一下追踪,看到执行的这条分支每个节点的输入输出情况:
4、发布
点击发布:
工作流可以发布为工具,作为agent应用的工具。同时也可以直接运行(批量运行)或者通过发布API的形式提供服务。
输入分数,点击运行:
执行结果符合预期:
三、小结
工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。
作者简介:
读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。