【Python大语言模型系列】一文教你使用dify云版本开发一个AI工作流(完整教程)

这是我的第358篇原创文章。

一、引言

Dify是一个功能强大的AI工作流平台,我们能够利用此平台实现我们自己个性化工具!

a.打开官网:https://cloud.dify.ai/signin

b.使用账号登录,选gmail,github账号都可以

图片

Dify 工作流分为两种类型: 

  • Chatflow:面向对话类情景,包括客户服务、语义搜索、以及其他需要在构建响应时进行多步逻辑的对话式应用程序。

    • 以客户服务为例:

      • 通过将 LLM 集成到您的客户服务系统中,您可以自动化回答常见问题,减轻支持团队的工作负担。LLM 可以理解客户查询的上下文和意图,并实时生成有帮助且准确的回答。

  • Workflow:面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。

二、实现过程

工作流逻辑:根据学生输入的各科目的分数,进行评分。如果语文和数学两门成绩都在99以上,则评为‘顶级学霸’(代码执行),如果语文和数学两门成绩都在80分以上,则评为“优秀学生”(代码执行),否则评为“还需继续努力”(代码执行)。

1、选择工作室-选择空白应用

图片

这里我选择工作流的应用类型,名称设置为:Q老师评分,描述设置为:评分小助手。

图片

2、编排工作流

图片

工作流就是一个流程图,包含开始节点、中间处理节点、结束节点,开始节点一般需要有输入字段,结束节点一般是一个分支的结束,是输出结果,需要有输出变量,中间节点一般是处理的逻辑。

开始节点:

图片

中间条件分支节点:

图片

中间代码执行节点:

图片

结束节点:

图片

完整的工作流编排如下:

图片

3、调试

点击运行-输入变量值-点击开始运行:

图片

可以看出输出了总分和评价:

图片

可以看一下输入和输出的详情:

图片

可以点击一下追踪,看到执行的这条分支每个节点的输入输出情况:

图片

4、发布

点击发布:

图片

工作流可以发布为工具,作为agent应用的工具。同时也可以直接运行(批量运行)或者通过发布API的形式提供服务。

图片

输入分数,点击运行:

图片

执行结果符合预期:

图片

三、小结

工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值