Dify大模型开发技巧:约束大模型回答范围

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 从零开始的Dify大模型应用开发指南
  22. 基于dify开发的多模态大模型应用(附代码)
  23. 基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统
  24. 快速接入stable diffusion的文生图能力
  25. 多模态大模型通过外接数据方案实现电力智能巡检(设计方案)
  26. 大模型prompt实例:知识库信息质量校验模块
  27. 基于Dify的LLM-RAG多轮对话需求解决方案(附代码)
  28. Dify大模型开发技巧:约束大模型回答范围

文章目录<

### Dify问题分类器的使用方法 #### 创建并配置知识库 为了有效利用Dify问题分类器,需先构建一个完善的知识库。这涉及收集和整理特定领域内的信息资源,通过Dify平台上的知识库管理界面完成设置工作[^1]。 #### 开发聊天助手应用 基于已有的知识库,在平台上进一步开发聊天助手应用程序。此过程允许开发者自定义聊天机器人的外观、行为逻辑等特性,并能立即享受到内置的各种高级功能如内容审查机制与建议性的应答选项支持。 #### 导入知识库至聊天助手 当上述准备工作完成后,下一步就是把之前建立好的知识库集成到新创建出来的聊天助手里面去。这样做可以使得聊天机器人具备更广泛而深入的理解能力,从而更好地服务于实际应用场景下的问答需求测试。 #### 启用记忆功能提升对话质量 对于希望提高连续多轮次交流效率的情况来说,启用记忆模式是一个不错的选择。一旦激活该选项之后,每一次向模型提交的新问题是连同之前的交谈记录一起被送进去处理的;这样有助于大型语言模型(LLM)更加精准地把握当前话题背景信息,进而改善整体沟通效果[^2]。 ```python # 示例代码展示如何调用带有历史消息的记忆接口 def send_message_with_history(message, history): response = llm_api.send_message( message=message, conversation_history=history # 将过往对话加入请求参数中传递给LLM ) return response['reply'] ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写代码的中青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值