线性回归
模型:线性回归的假设:输出与各个输入之间是线性关系,求出最终的权重与偏置
损失函数:在训练过程中衡量价格预测值与真实值间的误差,单个样本时,使用平方误差;取小批量样本时,使用平方误差求平均。
优化:使用随机梯度下降,小批量随机梯度下降指先选取一组模型参数的初始值,如随机选取;接下来对参数进行多次迭代,使每次迭代都可能降低损失函数的值。
矢量计算:使用torch做矢量加法比使用标量加法更快。
Softmax与分类模型
线性回归用于连续值预测
Softmax用于离散值预测
多层感知机
多层感知机(multilayer perceptron,MLP):神经网络的基础架构
神经网络的激活函数:使得神经网络能够进行非线性变换,激活函数一定是非线性的,通常有ReLU函数、Sigmoid函数、tanh函数