1、TensorBoard的安装
2、add_scalar()的使用(常用来绘制train/val loss)
打开pycharm,设置环境 SummaryWriter类的使用
from torch.utils.tensorboard import SummaryWriter
点中SummaryWriter,按中command出现该类的解释,是一个直接向log_dir文件夹写入的事件文件,该文件可以对tensorboard进行一个解析。包括初始化函数,需要写文件夹的名称(也可以不写)
按command+"/"可以注释代码
按Tab键进行缩进
add_scalar()是添加一个标量到summary,tag是图片的标题,saclar_value对应于y轴,global_step对应于x轴
点一下运行,发现报错
接下来安装TensorBoard,在终端激活pytorch环境(或者直接在pycharm Terminal),输入pip install TensorBoard,安装成功,再次运行程序
可以发现生成了logs,接下来学习如何打开该事件
logdir = 事件文件所在文件夹名
在pycharm Terminal输入tensorboard --logdir=logs
也可以指定端口,通过命令 tensorboard --logdir=logs --port=6007
同样的方式也可以写y=2x的,同样的也可以在对应端口看到
假设不改变tag的命名,也就是
在端口看到的图会出现混乱,常用的做法是把所有的log文件删掉并且杀掉所有的进程重新开始
TensorBoard是一个可视化工具,它可以用来展示网络图、张量的指标变化、张量的分布情况等。特别是在训练网络的时候,我们可以设置不同的参数(比如:权重W、偏置B、卷积层数、全连接层数等),使用TensorBoader可以很直观的帮我们进行参数的选择。
详细代码看P8_Tensorboard.py
from torch.utils.tensorboard import SummaryWriter
容易遇到以下问题,以及tensorboard的安装问题
pip install tb-nightly
教程与代码地址
笔记中,图片和代码基本源自up主的视频和代码
视频链接: PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】
视频代码: https://github.com/xiaotudui/PyTorch-Tutorial
如果想要爬虫视频网站一样的csdn目录,可以去这里下载代码:https://github.com/JeffreyLeal/MyUtils/tree/%E7%88%AC%E8%99%AB%E5%B7%A5%E5%85%B71