多视角-2-Generalized Latent Multi-View Subspace Clustering

原文链接 https://ieeexplore.ieee.org/document/8502831/
主要学习了子空间聚类部分

Abstract

论文方法从多个角度探索潜在的互补信息,同时寻找潜在的潜在表征。利用多视图的互补性,潜表示比单个视图更全面地描述了数据,从而使子空间表示更加准确和稳定。
提出了两个LMSC公式:基于潜在表示与每个视图之间的线性相关的线性LMSC (lLMSC)和基于神经网络处理一般关系的 generalized LMSC (gLMSC)。该方法可在交变方向最小化(ALM-ADM)框架的增广拉格朗日乘子下进行有效优化。

1 Introduction

现有的子空间聚类方法的通用公式: min ⁡ Z L ( X , X Z ) + λ Ω ( Z ) (1) \min _{\mathrm{Z}} \mathcal{L}(\mathbf{X}, \mathbf{X Z})+\lambda \Omega(\mathbf{Z})\tag1 ZminL(X,XZ)+λΩ(Z)(1)
现有的多视角子空间聚类方法通常直接重构原始视图上的数据点,生成单独的、特定于视图的子空间表示,一般采用以下公式:
min ⁡ { Z ( v ) } v = 1 V L ( { ( X ( v ) , X ( v ) Z ( v ) ) } v = 1 V ) + λ Ω ( { Z ( v ) } v = 1 V ) (2) \min _{\left\{\mathbf{Z}^{(v)}\right\}_{v=1}^{V}} \mathcal{L}\left(\left\{\left(\mathbf{X}^{(v)}, \mathbf{X}^{(v)} \mathbf{Z}^{(v)}\right)\right\}_{v=1}^{V}\right)+\lambda \Omega\left(\left\{\mathbf{Z}^{(v)}\right\}_{v=1}^{V}\right)\tag2 {Z(v)}v=1VminL({(X(v),X(v)Z(v))}v=1V)+λΩ({Z(v)}v=1V)(2)
X ( v ) \mathbf{X}^{(v)} X(v)对应于特征矩阵
Z ( v ) \mathbf{Z}^{(v)} Z(v)对应于 v v v 视角子空间表示

3 Latent Multi-view Subspace Clustering

潜在的假设是,这些不同的观点来自一个潜在的表征。基本上,从一个方面来说,来自不同视图的信息应该被编码到习得的表示中。另一方面,学习到的潜表征应满足特定任务(任务导向目标).因此有了通用的目标函数:
I ( { X v } v = 1 V , H ; Θ 1 ) ⏟ information preservation  + λ S ( H ; Θ 2 ) ⏟ task-oriented goal  (3) \underbrace{\mathcal{I}\left(\left\{\mathbf{X}_{v}\right\}_{v=1}^{V}, \mathbf{H} ; \mathbf{\Theta}_{1}\right)}_{\text {information preservation }}+\lambda \underbrace{\mathcal{S}\left(\mathbf{H} ; \mathbf{\Theta}_{2}\right)}_{\text {task-oriented goal }}\tag3 information preservation  I({Xv}v=1V,H;Θ1)+λtask-oriented goal  S(H;Θ2)(3)

H = [ h 1 , … , h n ] ∈ R k × n \mathbf{H}=\left[\mathbf{h}_{1}, \ldots, \mathbf{h}_{n}\right] \in \mathbb{R}^{k \times n} H=[h1,,hn]Rk×n : latent representation matrix
I (   .   ) \mathcal{I}(\ .\ ) I( . ): 确保从初始视角的潜在表示信息编码,从而避免了潜在表征对特定任务的偏向
S (   .   ) \mathcal{S}(\ .\ ) S( . ): 任务导向项
Θ 1 , Θ 2 \Theta_{1} ,\Theta_{2} Θ1Θ2: 分别是 I (   .   ) \mathcal{I}(\ .\ ) I( . ) S (   .   ) \mathcal{S}(\ .\ ) S( . )的对应的参数

更具体地,对于潜在的多视角子空间聚类,有下式:
min ⁡ θ v , H , Z L S ( H , H Z ) + ∑ v = 1 V α v L V ( F v ( H ; θ v ) , X ( v ) ) + λ Ω ( Z ) (3) \min _{\boldsymbol{\theta}_{v}, \mathbf{H}, \mathbf{Z}} \mathcal{L}_{S}(\mathbf{H}, \mathbf{H Z})+\sum_{v=1}^{V} \alpha_{v} \mathcal{L}_{V}\left(\mathcal{F}_{v}\left(\mathbf{H} ; \theta_{v}\right), \mathbf{X}^{(v)}\right)+\lambda \Omega(\mathbf{Z})\tag3 θv,H,ZminLS(H,HZ)+v=1VαvLV(Fv(H;θv),X(v))+λΩ(Z)(3)
L S ( H , H Z ) \mathcal{L}_{S}(\mathbf{H}, \mathbf{H Z}) LS(H,HZ): 子空间表示 的损失函数(the loss function for the subspace representation)
L V ( F v ( H ; θ v ) , X ( v ) ) \mathcal{L}_{V}\left(\mathcal{F}_{v}\left(\mathbf{H} ; \theta_{v}\right), \mathbf{X}^{(v)}\right) LV(Fv(H;θv),X(v)): 重构后的损失
F v ( H ; θ v ) \mathcal{F}_{v}\left(\mathbf{H} ; \theta_{v}\right) Fv(H;θv): 从潜在表示 H \mathbf{H} H v v v视角的观测的底层映射
α v > 0   a n d   λ > 0 \alpha_v>0\ and\ \lambda>0 αv>0 and λ>0: 分别用于控制 v v v视角的影响和子空间表示的正则化程度

有了(4)式的目标函数,可以学习到潜在多视角表示。论文提出两种潜在多视角子空间聚类方法:linear(1)LMSC and generalized (g)LMSC

ILMSC

object function:
min ⁡ P , H , Z , E V , E S ∣ E ∥ 2 , 1 + λ ∥ Z ∥ ∗ s.t.  X = P H + E V , H = H Z + E S , E = [ E V ; E S ]  and  P P T = I (10) \begin{array}{c}\min_{\mathbf{P}, \mathbf{H}, \mathbf{Z}, \mathbf{E}_{V},\mathbf{E}_{S}} |\mathbf{E}\|_{2,1}+\lambda\|\mathbf{Z}\|_{*} \\\text {s.t. } \mathbf{X}=\mathbf{P H}+\mathbf{E}_{V}, \mathbf{H}=\mathbf{H Z}+\mathbf{E}_{S}, \\\mathbf{E}=\left[\mathbf{E}_{V} ; \mathbf{E}_{S}\right] \text { and } \mathbf{P} \mathbf{P}^{T}=\mathbf{I}\end{array}\tag{10} minP,H,Z,EV,ESE2,1+λZs.t. X=PH+EV,H=HZ+ES,E=[EV;ES] and PPT=I(10)

其中,X 表示第 v 个视角的特征矩阵,H 表示待学习隐藏表达矩阵,Z 表示子空间表达矩阵,P 表示隐藏表达到每个视角的映射关系,Es和 Ev分别表示对于每个样本和每个视角的重构误差,两者按列组合成 E,λ是一个超参数,用来调整重构误差项与正则项的比重。

J J J is introduced to replace Z Z Z min ⁡ P , H , Z , E V , E S , J ∥ E ∥ 2 , 1 + λ ∥ J ∥ ∗ s.t.  X = P H + E V , H = H Z + E S E = [ E V ; E S ] , P P T = I  and  J = Z \begin{array}{c}\min _{\mathbf{P}, \mathbf{H}, \mathbf{Z}, \mathbf{E}_{V}, \mathbf{E}_{S}, \mathbf{J}}\|\mathbf{E}\|_{2,1}+\lambda\|\mathbf{J}\|_{*} \\\text {s.t. } \mathbf{X}=\mathbf{P H}+\mathbf{E}_{V}, \mathbf{H}=\mathbf{H Z}+\mathbf{E}_{S} \\\mathbf{E}=\left[\mathbf{E}_{V} ; \mathbf{E}_{S}\right], \mathbf{P} \mathbf{P}^{T}=\mathbf{I} \text { and } \mathbf{J}=\mathbf{Z}\end{array} minP,H,Z,EV,ES,JE2,1+λJs.t. X=PH+EV,H=HZ+ESE=[EV;ES],PPT=I and J=Z

AlM problem: L ( P , H , Z , E V , E S , J ) = ∥ E ∥ 2 , 1 + λ ∥ J ∥ ∗ + Φ ( Y 1 , X − P H − E V ) + Φ ( Y 2 , H − H Z − E S ) + Φ ( Y 3 , J − Z )  s.t.  E = [ E V ; E S ] ; P P T = I \begin{aligned}\mathcal{L}\left(\mathbf{P}, \mathbf{H}, \mathbf{Z}, \mathbf{E}_{V}, \mathbf{E}_{S}, \mathbf{J}\right) =&\|\mathbf{E}\|_{2,1}+\lambda\|\mathbf{J}\|_{*} \\&+\Phi\left(\mathbf{Y}_{1}, \mathbf{X}-\mathbf{P} \mathbf{H}-\mathbf{E}_{V}\right) \\&+\Phi\left(\mathbf{Y}_{2}, \mathbf{H}-\mathbf{H Z}-\mathbf{E}_{S}\right)+\Phi\left(\mathbf{Y}_{3}, \mathbf{J}-\mathbf{Z}\right) \\\text { s.t. } \mathbf{E} &=\left[\mathbf{E}_{V} ; \mathbf{E}_{S}\right] ; \mathbf{P} \mathbf{P}^{T}=\mathbf{I}\end{aligned} L(P,H,Z,EV,ES,J)= s.t. EE2,1+λJ+Φ(Y1,XPHEV)+Φ(Y2,HHZES)+Φ(Y3,JZ)=[EV;ES];PPT=I

have the definition as: Φ ( C , D ) = μ 2 ∥ D ∥ F 2 + ⟨ C , D ⟩ \Phi(\mathbf{C}, \mathbf{D})=\frac{\mu}{2}\|\mathbf{D}\|_{F}^{2}+\langle\mathbf{C}, \mathbf{D}\rangle Φ(C,D)=2μDF2+C,D

Subproblem
  1. P − s u b p r o b l e m P-subproblem Psubproblem: P ∗ = arg ⁡ min ⁡ P Φ ( Y 1 , X − P H − E V )  s.t.  P P T = I \begin{array}{l}\mathbf{P}^{*}=\arg \min _{\mathbf{P}} \Phi\left(\mathbf{Y}_{1}, \mathbf{X}-\mathbf{P H}-\mathbf{E}_{V}\right) \\\text { s.t. } \mathbf{P} \mathbf{P}^{T}=\mathbf{I}\end{array} P=argminPΦ(Y1,XPHEV) s.t. PPT=I

就是优化,变化一个变量,固定其它参数,使得目标函数最小
在这里插入图片描述

gLMSC

论文使用三层神经网络训练,目标函数:
min ⁡ { θ v } v = 1 V , H , Z 1 2 ∥ H − H Z ∥ F 2 + ∑ v = 1 V α v 2 ∥ X v − W ( 2 , v ) f ( W ( 1 , v ) H ) ∥ F 2 + λ ∥ Z ∥ ∗ \begin{array}{l}\min _{\left\{\boldsymbol{\theta}_{v}\right\}_{v=1}^{V}, \mathbf{H}, \mathbf{Z}} \frac{1}{2}\|\mathbf{H}-\mathbf{H Z}\|_{F}^{2} \\\quad+\sum_{v=1}^{V} \frac{\alpha_{v}}{2}\left\|\mathbf{X}_{v}-\mathbf{W}_{(2, v)} f\left(\mathbf{W}_{(1, v)} \mathbf{H}\right)\right\|_{F}^{2}+\lambda\|\mathbf{Z}\|_{*}\end{array} min{θv}v=1V,H,Z21HHZF2+v=1V2αvXvW(2,v)f(W(1,v)H)F2+λZ

其中,W(k,v)表示对于第 v 个视角第 k 层到 k+1 层的权重矩阵

激活函数: f ( a ) = tanh ⁡ ( a ) = 1 − e 2 a 1 + e − 2 a (5) f(a)=\tanh (a)=\frac{1-e^{2 a}}{1+e^{-2 a}}\tag5 f(a)=tanh(a)=1+e2a1e2a(5)
相应的导数计算:
f ′ ( a ) = tanh ⁡ ′ ( a ) = 1 − tanh ⁡ 2 ( a ) (6) f^{\prime}(a)=\tanh ^{\prime}(a)=1-\tanh ^{2}(a)\tag6 f(a)=tanh(a)=1tanh2(a)(6)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值