股票预测算法通常涉及时间序列分析、统计学、机器学习和深度学习等多种方法。以下是经典的、常见的十大股票预测算法及其Python实现。这些算法各有优势,可以用于不同的市场预测场景。以下代码实现中,我们将使用yfinance
下载数据,并展示各算法的基本使用方法。
1. 移动平均线(Moving Average, MA)
移动平均线是一种常见的时间序列分析方法,它能够平滑数据波动,反映趋势。
import pandas as pd
import matplotlib.pyplot as plt
import yfinance as yf
# 下载数据
data = yf.download("AAPL", start="2023-01-01", end="2023-10-01")
data['MA_20'] = data['Close'].rolling(window=20).mean()
data['MA_50'] = data['Close'].rolling(window=50).mean()
# 绘图
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['MA_20'], label='20-Day MA', color='orange')
plt.plot(data['MA_50'], label='50-Day MA', color='green')
plt.title('Moving Average (MA) - Apple Stock')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.show()
2. 指数平滑移动平均(Exponential Moving Average, EMA)
指数平滑移动平均(EMA)比普通移动平均线更加灵敏,可以更好地跟随趋势。
data['EMA_20'] = data['Close'].ewm(span=20, adjust=False).mean()
# 绘图
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['EMA_20'], label='20-Day EMA', color='purple')
plt.title('Exponential Moving Average (EMA) - Apple Stock')
plt.xlabel('Date')
plt.ylabel