好用的股票预测八大算法的Python实现

股票预测算法通常涉及时间序列分析、统计学、机器学习和深度学习等多种方法。以下是经典的、常见的十大股票预测算法及其Python实现。这些算法各有优势,可以用于不同的市场预测场景。以下代码实现中,我们将使用yfinance下载数据,并展示各算法的基本使用方法。

1. 移动平均线(Moving Average, MA)

在这里插入图片描述
移动平均线是一种常见的时间序列分析方法,它能够平滑数据波动,反映趋势。

import pandas as pd
import matplotlib.pyplot as plt
import yfinance as yf

# 下载数据
data = yf.download("AAPL", start="2023-01-01", end="2023-10-01")
data['MA_20'] = data['Close'].rolling(window=20).mean()
data['MA_50'] = data['Close'].rolling(window=50).mean()

# 绘图
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['MA_20'], label='20-Day MA', color='orange')
plt.plot(data['MA_50'], label='50-Day MA', color='green')
plt.title('Moving Average (MA) - Apple Stock')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.show()

2. 指数平滑移动平均(Exponential Moving Average, EMA)

在这里插入图片描述

指数平滑移动平均(EMA)比普通移动平均线更加灵敏,可以更好地跟随趋势。

data['EMA_20'] = data['Close'].ewm(span=20, adjust=False).mean()

# 绘图
plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['EMA_20'], label='20-Day EMA', color='purple')
plt.title('Exponential Moving Average (EMA) - Apple Stock')
plt.xlabel('Date')
plt.ylabel
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百锦再@新空间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值