反向传播推导
反向传播是一种利用链式求导法则求梯度的方法,理解这个过程对于学习深度学习是十分重要的。之前一直只是理解基本的概念,下面详细说明具体的理论并具体推导。
基本求导
f(x,y)=xy∂f∂x=y∂f∂y=x f ( x , y ) = x y ∂ f ∂ x = y ∂ f ∂ y = x
f(x,y)=max(x,y)∂f∂x=1(x≥y)∂f∂y=1(y≥x)∂f∂x=0(x≤y)∂f∂y=0(y≤x) f ( x , y ) = m a x ( x , y ) ∂ f ∂ x = 1 ( x ≥ y ) ∂ f ∂ y = 1 ( y ≥ x ) ∂ f ∂ x = 0 ( x ≤ y ) ∂ f ∂ y = 0 ( y ≤ x )
x=−2y=5z=−4q=x+y=3f=q∗z=−12 x = − 2 y = 5 z = − 4 q = x + y = 3 f = q ∗ z = − 12