MIT 18.01 Single Variable Calculus(单变量微积分)课堂笔记【4】——求导法则,隐函数微分和反函数求导

求导法则

  • 常数乘法法则
    d d t ( c u ) = c d u d t , c 是 常 数 \frac{d}{dt}(cu)=c\frac{du}{dt},\quad c是常数 dtd(cu)=cdtdu,c
  • 加法法则
    d d t ( u + v ) = d u d t + d v d t \frac{d}{dt} (u+v)=\frac{du}{dt}+\frac{dv}{dt} dtd(u+v)=dtdu+dtdv
  • 乘法法则
    ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  • 除法法则
    ( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)=v2uvuv
  • 链式法则
    d y d t = d y d x d x d t \frac{dy}{dt}=\frac{dy}{dx}\frac{dx}{dt} dtdy=dxdydtdx

在这里插入图片描述

隐函数微分

之前给出的函数都是 y = f ( x ) y=f(x) y=f(x)的形式。隐函数就是类似于 x 2 + y 2 − 1 = 0 x^2 + y^2 - 1 =0 x2+y21=0这样的函数, y y y的表达式没有直接给出。
之前已经讲过了对指数求导公式,当指数是整数的情况:
d d x ( x a ) = a x a − 1 , a = 0 , 1 , 2... \frac{d}{dx}(x^a)=ax^{a-1},\quad a=0,1,2... dxd(xa)=axa1,a=0,1,2...
现在将指数扩展到有理数域, a = m / n a=m/n a=m/n。上述公式也成立。
在这里插入图片描述

反函数求导

对于函数 y = f ( x ) y=f(x) y=f(x),它的反函数就是 x = g ( y ) x=g(y) x=g(y),或者记作 g = f − 1 ( x ) g=f^{-1}(x) g=f1(x)。相当于定义域和值域交换了一下。
在这里插入图片描述

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superbin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值