求导法则
- 常数乘法法则
d d t ( c u ) = c d u d t , c 是 常 数 \frac{d}{dt}(cu)=c\frac{du}{dt},\quad c是常数 dtd(cu)=cdtdu,c是常数 - 加法法则
d d t ( u + v ) = d u d t + d v d t \frac{d}{dt} (u+v)=\frac{du}{dt}+\frac{dv}{dt} dtd(u+v)=dtdu+dtdv - 乘法法则
( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′ - 除法法则
( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)′=v2u′v−uv′ - 链式法则
d y d t = d y d x d x d t \frac{dy}{dt}=\frac{dy}{dx}\frac{dx}{dt} dtdy=dxdydtdx
隐函数微分
之前给出的函数都是
y
=
f
(
x
)
y=f(x)
y=f(x)的形式。隐函数就是类似于
x
2
+
y
2
−
1
=
0
x^2 + y^2 - 1 =0
x2+y2−1=0这样的函数,
y
y
y的表达式没有直接给出。
之前已经讲过了对指数求导公式,当指数是整数的情况:
d
d
x
(
x
a
)
=
a
x
a
−
1
,
a
=
0
,
1
,
2...
\frac{d}{dx}(x^a)=ax^{a-1},\quad a=0,1,2...
dxd(xa)=axa−1,a=0,1,2...
现在将指数扩展到有理数域,
a
=
m
/
n
a=m/n
a=m/n。上述公式也成立。
反函数求导
对于函数
y
=
f
(
x
)
y=f(x)
y=f(x),它的反函数就是
x
=
g
(
y
)
x=g(y)
x=g(y),或者记作
g
=
f
−
1
(
x
)
g=f^{-1}(x)
g=f−1(x)。相当于定义域和值域交换了一下。