(2023)GVD-Exploration: An Efficient Autonomous Robot Exploration Framework Based on Fast Generalized Voronoi Diagram Extraction
摘要
快速探索随机树 (RRT) 是移动机器人自主探索的一种流行技术。然而,RRT 使用的随机采样会导致边界提取效率低下且不准确,从而影响勘探性能。为了解决路径规划慢和路径成本高的问题,我们提出了一个框架,该框架使用基于广义 Voronoi 图 (GVD) 的多选策略进行机器人探索。我们的框架由三个部分组成:一个新颖的映射模型,它使用端到端神经网络实时构建环境的 GVD;基于 GVD 的启发式方案,可加速边界提取并减少边界冗余;以及一个多选边界分配方案,该方案考虑了不同类型的边界,并使机器人能够在勘探过程中做出理性决策。我们在仿真和真实世界实验中评估了我们的方法,并表明它在效率和稳健性方面优于基于 RRT 的勘探方法
注释:与基于 RRT 的移动机器人自主探索相比,我们的方法基于 GVD 信息增益提取前沿,独立于随机树的增长,有效地缓解了与陷阱空间问题相关的挑战。与大多数现有的机器人勘探策略不同,我们的机器人基于各种前沿采用了多样化的勘探决策,而不是依赖单一的决策方法。在这方面,自主机器人优先考虑局部边界内的探索,而在全球探索期间,它将探索任务转化为 TSP 问题进行优化,确保机器人做出最佳的行为决策。
内容
上图展示的就是使用RRT进行前沿检测时会出现的问题,绿点为检测出的前沿点,可以看到在左上角生成了许多冗余的边界点,而在中间有一个角落还没有检测出相应的前沿点。
作者提出基于前沿的方法面临着两个难点:
- 如何高效准确的在复杂环境中(如迷宫、狭窄走廊、角落)提取前沿点,边界可能稀疏或冗余(见图 1);
- 以及如何选择最大化信息增益和最小化路径成本的前沿,同时考虑到前沿的全局连续性,而不是选择可能导致低效探索的局部最优边界。
方法
首先根据环境地图通过神经网络(池化和卷积)得到GVD(更快的构建GVD),池化层n层负责将环境地图变为障碍物距离地图,卷积层在障碍物距离地图上得到进行卷积操作,得到环境的GVD图。接着根据GVD节点形状合并启发式前沿点,并且评估前沿点的成本和信息增益。对于局部探索,先择成本最低的前沿,对于全局探索,通过解决TSP问题找到访问每个前沿的最佳顺序。路径成本的计算使用GVD路径而不是欧氏距离,考虑连通性
GVD构建模块
下图表示通过池化、卷积快速得到环境地图的GVD图:
基于 GVD 的启发式 Frontiers 融合提取
分为局部和全局
局部启发式前沿提取
取M*M大小的局部框,将框中的GDV节点统一放入集合 G l o c a l G_{local