(TRO 2024)Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
摘要
本文通过讨论参加为期三年的 SubT 比赛的六个团队的不同 SLAM 策略和结果,报告了 Underground SLAM 的最新技术。特别是,本文有四个主要目标。1)回顾团队采用的算法、架构和系统;特别强调以光探测和测距 (LIDAR) 为中心的 SLAM 解决方案(几乎所有参赛队伍的首选方法)、异构多机器人操作(包括空中和地面机器人)以及现实世界的地下操作(从模糊因素的存在到需要处理严格的计算约束)。文章并不回避讨论不同 SubT SLAM 系统背后的“肮脏细节”,这些细节经常在技术论文中被省略。2)通过强调当前 SLAM 系统的可能性以及作者认为通过一些良好的系统工程可以实现的目标来讨论该领域的成熟度。3)概述了作者认为是根本性的未决问题
引言
地下环境定位与建图的挑战
1)无法访问绝对定位源(如GPS)
2)很少能使用先前的环境地图
3)光照条件差使得部署视觉和视觉-惯性 SLAM 解决方案具有挑战性(虽然照明不足可以通过机载光源来部分补偿,但产生的照明要么微弱,要么产生镜面反射,干扰视觉特征跟踪
4)可能存在的浓密遮挡物(例如雾、旋转尘埃云和烟雾)对激光雷达的使用提出了挑战,而在崎岖地形上使用快速移动平台会由于激进的 6-DoF 导致惯性传感器产生噪声运动和高频振动。
5)在算法层面,缺乏感知特征的环境,例如长走廊和大开放空间,可能会导致激光雷达里程计方法失败。
6)自相似区域的存在可能会导致闭环检测方法出现误报;
7)即使没有感知混叠,环路闭合在长隧道系统中也可能很少发生,从而导致定位错误增加。
相关综述
提到了一些关于多机器人系统的综述
1) [16]调查多机器人应用的分布式优化算法。帕克等人。T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of distributed optimization methods for multi-robot systems,” 2021, arXiv:2103.12840.
2)[17] 研究多机器人 SLAM 架构,重点关注通信问题及其对多机器人团队的影响。L. E. Parker, D. Rus, and G. S. Sukhatme, “Multiple mobile robot systems,” in Springer Handbook of Robotics. Berlin, Germany: Springer, 2016, pp. 1335–1379.
3)[18]提供了协作 SLAM 的文献综述,重点关注鲁棒性、通信和资源管理。P. Y. Lajoie, B. Ramtoula, F. Wu, and G. Beltrame, “Towards collaborative simultaneous localization and mapping: A survey of the current research landscape,” 2021, arXiv:2108.08325.
4)[19]回顾了使多机器人系统对环境不确定性、故障和对抗性攻击具有鲁棒性的算法开发。 L. Zhou and P. Tokekar, “Multi-robot coordination and planning in uncertain and adversarial environments,” 2021, arXiv:2108.08325.
关于地下SLAM的前沿技术
单机器人和多机器人 SLAM 系统剖析
SLAM架构被典型的分为两种:1)前端 2)后端
前端:①基于激光雷达的SLAM前端通过从连续的激光雷达扫描中提取和配准显著特征,将这些扫描数据转换为里程计估计值,用来确定机器人在环境中的相对位置和方向变化。(CERBERUS/Explorer) ②基于激光雷达的SLAM前端通过使用迭代最近点算法(ICP)或其变体,对激光雷达扫描生成的点云或表面单元进行密集配准,以估计机器人在环境中的相对运动。这种方法依赖于对齐连续的点云数据,从而推算出机器人从一个位置到另一个位置的位移和旋转。(CoSTAR/CSIRO/CTU-CRAS-Norlab/MARBLE)
后端:关于后端松耦合/紧耦合等描述(略过)
多机器人系统:多机器人 SLAM 架构可以是集中式、分散式或分布式的。集中式:基站从所有机器人收集数据,然后计算整个团队的最佳轨迹和地图估计。分散式:每个机器人都被视为一个基站,收集来自其他机器人的所有数据并执行轨迹的联合估计和整个团队的全局地图。分布式:每个机器人仅与其邻居交换部分信息,并且仅依靠分布式机器人间闭环检测和分布式优化协议来估计自己的地图。