【自主探索综述】极端环境中 SLAM 的现状和未来:DARPA SubT 挑战

(TRO 2024)Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
在这里插入图片描述

摘要

本文通过讨论参加为期三年的 SubT 比赛的六个团队的不同 SLAM 策略和结果,报告了 Underground SLAM 的最新技术。特别是,本文有四个主要目标。1)回顾团队采用的算法、架构和系统;特别强调以光探测和测距 (LIDAR) 为中心的 SLAM 解决方案(几乎所有参赛队伍的首选方法)、异构多机器人操作(包括空中和地面机器人)以及现实世界的地下操作(从模糊因素的存在到需要处理严格的计算约束)。文章并不回避讨论不同 SubT SLAM 系统背后的“肮脏细节”,这些细节经常在技术论文中被省略。2)通过强调当前 SLAM 系统的可能性以及作者认为通过一些良好的系统工程可以实现的目标来讨论该领域的成熟度。3)概述了作者认为是根本性的未决问题

引言

地下环境定位与建图的挑战

1)无法访问绝对定位源(如GPS)
2)很少能使用先前的环境地图
3)光照条件差使得部署视觉和视觉-惯性 SLAM 解决方案具有挑战性(虽然照明不足可以通过机载光源来部分补偿,但产生的照明要么微弱,要么产生镜面反射,干扰视觉特征跟踪
4)可能存在的浓密遮挡物(例如雾、旋转尘埃云和烟雾)对激光雷达的使用提出了挑战,而在崎岖地形上使用快速移动平台会由于激进的 6-DoF 导致惯性传感器产生噪声运动和高频振动。
5)在算法层面,缺乏感知特征的环境,例如长走廊和大开放空间,可能会导致激光雷达里程计方法失败。
6)自相似区域的存在可能会导致闭环检测方法出现误报;
7)即使没有感知混叠,环路闭合在长隧道系统中也可能很少发生,从而导致定位错误增加。

相关综述

提到了一些关于多机器人系统的综述
1) [16]调查多机器人应用的分布式优化算法。帕克等人。T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of distributed optimization methods for multi-robot systems,” 2021, arXiv:2103.12840.
2)[17] 研究多机器人 SLAM 架构,重点关注通信问题及其对多机器人团队的影响。L. E. Parker, D. Rus, and G. S. Sukhatme, “Multiple mobile robot systems,” in Springer Handbook of Robotics. Berlin, Germany: Springer, 2016, pp. 1335–1379.
3)[18]提供了协作 SLAM 的文献综述,重点关注鲁棒性、通信和资源管理。P. Y. Lajoie, B. Ramtoula, F. Wu, and G. Beltrame, “Towards collaborative simultaneous localization and mapping: A survey of the current research landscape,” 2021, arXiv:2108.08325.
4)[19]回顾了使多机器人系统对环境不确定性、故障和对抗性攻击具有鲁棒性的算法开发。 L. Zhou and P. Tokekar, “Multi-robot coordination and planning in uncertain and adversarial environments,” 2021, arXiv:2108.08325.

关于地下SLAM的前沿技术

单机器人和多机器人 SLAM 系统剖析

SLAM架构被典型的分为两种:1)前端 2)后端
前端:①基于激光雷达的SLAM前端通过从连续的激光雷达扫描中提取和配准显著特征,将这些扫描数据转换为里程计估计值,用来确定机器人在环境中的相对位置和方向变化。(CERBERUS/Explorer) ②基于激光雷达的SLAM前端通过使用迭代最近点算法(ICP)或其变体,对激光雷达扫描生成的点云或表面单元进行密集配准,以估计机器人在环境中的相对运动。这种方法依赖于对齐连续的点云数据,从而推算出机器人从一个位置到另一个位置的位移和旋转。(CoSTAR/CSIRO/CTU-CRAS-Norlab/MARBLE)
后端:关于后端松耦合/紧耦合等描述(略过)
多机器人系统:多机器人 SLAM 架构可以是集中式、分散式或分布式的。集中式:基站从所有机器人收集数据,然后计算整个团队的最佳轨迹和地图估计。分散式:每个机器人都被视为一个基站,收集来自其他机器人的所有数据并执行轨迹的联合估计和整个团队的全局地图。分布式:每个机器人仅与其邻居交换部分信息,并且仅依靠分布式机器人间闭环检测和分布式优化协议来估计自己的地图。

目录 摘要…………………………………………………………………………………………Ⅰ Abstract……………………………………………………………………………………Ⅲ 第1章绪论…………………………………………………………………………………1 1.1课题的背景意义…………………………………………………………………1 1.2自主导航综述………………………………………………………………………2 1.2.1导航的概念……………………………………………………………………2 1.2.2导航的分类……………………………………………………………………2 1.2.3已知环境下的自主导航技术………………………………………………3 1.2.4未知环境下的自主导航技术………………………………………………8 1.3地图创建……………………………………………………………………………12 1.3.1几种常用的环境表示方法…………………………………………………12 1.3.2快速同时定位与地图生成(fastSLAM)……………………………………14 1.3.3基于视觉的同时定位与地图生成(vSLAM)……………………………16 1.3.4基于拓扑地图的同时定位与地图生成…………………………………18 1.4基于多机器人协作的路径探索综述…………………………………………19 1.4.1协作探索的定义………………………………………………………………19 1.4.2协作探索的国内外研究现状………………………………………………20 1.4.3协作探索中的关键问题……………………………………………………21 1.5本文的主要研究内容……………………………………………………………23 第2章基于速度空间寻优的局部避障方法………………………………………25 2.1引言…………………………………………………………………………………25 2.2速度空间寻优方法………………………………………………………………27 2.2.1曲率-速率法(CVM)…………………………………………………………27 2.2.2巷道-曲率法(LCM)…………………………………………………………28 2.2.3扇区-曲率法(BCM)…………………………………………………………29 2.3从笛卡儿空间到构型空间的转换……………………………………………30 2.4基于扇区分类的BCM改进……………………………………………………33 2.4.1扇区的形成与分类……………………………………………………………33 2.4.2最优扇区的选择………………………………………………………………34 -V-哈尔滨工业大学工学博士学位论文 2.5碰撞检测方法………………………………………………………………………36 2.5.1碰撞预测模型…………………………………………………………………36 2.5.2扩展卡尔曼滤波与速度估计………………………………………………37 2.5.3轨迹预测碰撞检测方法…………………………………………………39 2.6基于BCM的局部避障实验结果及其分析…………………………………41 2.7本章小结……………………………………………………………………………43 第3章基于拓扑地图的单机器人路径探索………………………………………45 3.1引言…………………………………………………………………………………45 3.2拓扑地图的必要性……………………………………………………………45 3.2.1拓扑地图与逻辑定位…………………………………………………45 3.2.2拓扑地图创建需要解决的关键技术…………………………………47 3.3基于BCM的实时拓扑地图创建方法…………………………………………48 3.3.1新型拓扑地图的定义………………………………………………………48 3.3.2拓扑节点的检测………………………………………………………………49 3.3.3拓扑节点的定位………………………………………………………………50 3.4比例不变特征变换………………………………………………………………54 3.4.1特征提取………………………………………………………………………55 3.4.2特征匹配………………………………………………………………………57 3.5基于拓扑地图的定位算法………………………………………………………58 3.6拓扑地图与其他地图的性能比较实验………………………………………59 3.6.1导航效率对比实验……………………………………………………………59 3.6.2地图维护与更新性能比较…………………………………………………62 3.6.3 SIFT与实时导航的矛盾……………………………………………………63 3.7本章小结……………………………………………………………………………64 第4章基于拓扑地图的多机器人协作路径探索…………………………………65 4.1引言…………………………………………………………………………………65 4.2基于隐马尔可夫模型的节点定位……………………………………67 4.2.1贝叶斯滤波……………………………………………………………………67 4.2.2隐马尔可夫模型………………………………………………………………68 4.3协作策略的选择……………………………………………………………………70 4.3.1基于HMM的拓扑地图拼接………………………………………………71 4.3.2基于市场法的多任务分配…………………………………………………73 4.4基于扫描匹配的混合地图拼接…………………………………………………75 -VI-目录 4.4.1混合地图………………………………………………………………………76 4.4.2基于fastSLAM的栅格地图生成…………………………………………77 4.4.3基于足迹匹配的混合地图拼接……………………………………………81 4.5基于拓扑地图的多机器人协作探索实验……………………………………83 4.5.1地图拼接实验…………………………………………………………………83 4.5.2基于市场法的协作探索实验………………………………………………85 4.6本章小结……………………………………………………………………………88 第5章利用移动感知网提高路径探索效率………………………………………89 5.1引言…………………………………………………………………………………89 5.2移动感知网体系结构……………………………………………………………90 5.2.1总体结构………………………………………………………………………90 5.2.2传感器系统……………………………………………………………………91 5.3无线感知网的节点定位方法……………………………………………………92 5.3.1蒙特卡罗定位………………………………………………………………94 5.3.2基于MCL的节点定位……………………………………………………95 5.3.3基于混合蒙特卡罗Box的节点定位……………………………………96 5.3.4节点定位对比实验…………………………………………………………98 5.4基于移动感知网的多机器人协作路径探索………………………………100 5.4.1利用机器人部署无线感知网节点………………………………………100 5.4.2利用无线感知网减轻无线通讯负担……………………………………101 5.5多机器人协作路径探索实验系统……………………………………………102 5.5.1硬件系统………………………………………………………………………102 5.5.2软件系统………………………………………………………………………103 5.6本章小结…………………………………………………………………………105 结论…………………………………………………………………………………………106 参考文献……………………………………………………………………………………108 攻读博士学位期间所发表的学术论文………………………………………………120 哈尔滨工业大学博士学位论文原创性声明…………………………………………121 哈尔滨工业大学博士学位论文使用授权书…………………………………………121 致谢…………………………………………………………………………………………122 个人简历……………………………………………………………………………………123 -VII-哈尔滨工业大学工学博士学位论文 Contents Abstract(In Chinese)………………………………………………………………………Ⅰ Abstract(In English)………………………………………………………………………Ⅲ Chapter 1 Introduction…………………………………………………………………1 1.1 The Background and Significance of the Research Work……………………1 1.2 Overview of Autonomous Navigation……………………………………………2 1.2.1 Defination of Navigation………………………………………………………2 1.2.2 Classification of Navigation…………………………………………………2 1.2.3 Autonomous Navigation Techniques in Known Environments…………3 1.2.4 Autonomous Navigation Techniques in Unknown Environments………8 1.3 Map Building………………………………………………………………………12 1.3.1 Several Existing Environment Representations…………………………12 1.3.2 Fast Simultaneous Localization and Mapping(fastSLAM)……………14 1.3.3 Vision-based Simultaneous Localization and Mapping(vSLAM)……16 1.3.4 Topological Map-based Simultaneous Localization and Mapping……18 1.4 Overview of Cooperative Path Exploration by Multi-robots………………19 1.4.1 Defination of Cooperative Exploration……………………………………19 1.4.2 State-of-the-art of Cooperative Exploration………………………………20 1.4.3 Critical Problems in Cooperative Exploration……………………………21 1.5 Main Work of Dissatation…………………………………………………………23 Chapter 2 Local Obstacle Avoidance based on Velocity Space Method………25 2.1 Introduction…………………………………………………………………………25 2.2 Velocity Space Method……………………………………………………………27 2.2.1 Curvature Velocity Method(CVM)…………………………………………27 2.2.2 Lane Curvature Method(LCM)……………………………………………28 2.2.3 Beam Curvature Method(BCM)……………………………………………29 2.3 Conversion from Cartesian Space to Configuration Space…………………30 2.4 Improvements on BCM based on Beam Classification………………………33 2.4.1 Formation and Classification of the Beams………………………………33 2.4.2 Selection of the Best Beam…………………………………………………34 -VIII-Contents 2.5 The Prediction Method of Collision……………………………………………36 2.5.1 The Prediction Model of Collision…………………………………………36 2.5.2 Extended Kalman Filter and Velocity Estimation………………………37 2.5.3 Trajectory Prediction and Collision Detection Method…………………39 2.6 The Experimental Result and Analysis of Local Obstacle Avoidance based on BCM……………………………………………………………………………………41 2.7 Summary……………………………………………………………………………43 Chapter 3 Topological Map-based Path Exploration by Single robot………45 3.1 Introduction…………………………………………………………………………45 3.2 Necessity of Topological Map……………………………………………………45 3.2.1 Topological Map and Logic Localization…………………………………45 3.2.2 Critical Techniques to be Resolved in Topological Map Construction 47 3.3 The Method of Realtime Topological Map Building based on BCM………48 3.3.1 The Defination of the Novel Topological Map……………………………48 3.3.2 Detection of the Topological Node…………………………………………49 3.3.3 Localization of the Topological Node………………………………………50 3.4 Scale-invariant Feature Transform………………………………………………54 3.4.1 Feature Extraction……………………………………………………………55 3.4.2 Feature Matching………………………………………………………………57 3.5 Localization based on Topological Map………………………………………58 3.6 Comparative Experiments of the Map Performance between the Topological Map and other Map Representations………………………………………………59 3.6.1 Comparative Experiments on Navigation Efficiency……………………59 3.6.2 Performance Comparison of Map Maintenance and Update……………62 3.6.3 Contradiction between SIFT and Realtime Navigation…………………63 3.7 Summary……………………………………………………………………………64 Chapter 4 Cooperative Path Exploration based on Topological Map by Multi- robot………………………………………………………………………………………65 4.1 Introduction…………………………………………………………………………65 4.2 Node Localization based on Hidden Markov Model(HMM)………………67 4.2.1 Bayes Filter……………………………………………………………………67 4.2.2 Hidden Markov Model………………………………………………………68 4.3 Selection of Coordination Strategy………………………………………………70 -IX-哈尔滨工业大学工学博士学位论文 4.3.1 Topological Map Merging based on HMM………………………………71 4.3.2 Multi-task Allocation based on Market Economy………………………73 4.4 Hybrid Map Merging based on Scan Matching………………………………75 4.4.1 Hybrid Map……………………………………………………………………76 4.4.2 Grid Map Building based on fastSLAM…………………………………77 4.4.3 Hybrid Map Merging based on Footprint Matching……………………81 4.5 Topological Map-based Experiment of Cooperative Path Exploration by Multi-robot………………………………………………………………………………83 4.5.1 The Experiment of Map Merging…………………………………………83 4.5.2 The Experiment of Cooperative Exploration based on Market Economy……………………………………………………………………………85 4.6 Summary……………………………………………………………………………88 Chapter 5 Improve the Efficiency of Path Exploration by Mobile Sensor Networks…………………………………………………………………………………89 5.1 Introduction…………………………………………………………………………89 5.2 Achitecture of Mobile Sensor Networks(MSN)………………………………90 5.2.1 Gross Structure…………………………………………………………………90 5.2.2 Sensor System…………………………………………………………………91 5.3 Node Localization of MSN………………………………………………………92 5.3.1 Monte Carlo Localization……………………………………………………94 5.3.2 Node Localization based on MCL…………………………………………95 5.3.3 Node Localization based on Mixture Monte Carlo Box…………………96 5.3.4 Comparative Experiments of Node Localization…………………………98 5.4 Cooperative Path Exploration by Multi-robot based on MSN……………100 5.4.1 Use Robots to Deploy the Node of MSN…………………………………100 5.4.2 Use MSN to Reduce the Burden of Wireless Communication………101 5.5 The System of Cooperative Path Exploration by Multi-robot…………102 5.5.1 Hardware System……………………………………………………………102 5.5.2 Software System……………………………………………………………103 5.6 Summary……………………………………………………………………………105 Conclusion…………………………………………………………………………………106 References…………………………………………………………………………………108 Papers published in the period of Ph.D.education……………………………120 -X-Contents Statement of copyright…………………………………………………………………121 Letter of authorization…………………………………………………………………121 Acknowledgment…………………………………………………………………………122 Resume………………………………………………………………………………………123
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值