3050显卡驱动安装+配置pytorch的cuda环境

本文档详细记录了配备3050显卡的电脑如何重新安装NVIDIA驱动、CUDA 11.6、cuDNN,并配置PyTorch的步骤。从下载驱动到验证CUDA版本,再到cuDNN的安装和PyTorch环境的创建,每个环节都有清晰的操作指南,适合需要搭建相应环境的开发者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

因为有一块3050的显卡,更新驱动的时候把之前配好的cuda10.0覆盖了,因此需要重新配置一下环境。记录一下过程,方便后面自己尽快恢复环境。

一、下载3050驱动

N卡的驱动下载过程都是一样的,先进入官网驱动程序下载

选择对应的配置,有的是笔记本的,注意区分一下。配置好了就下载,下载好驱动程序后打开运行,简易安装即可。安装完出现NVIDIA控制面板则代表成功了。

二、下载CUDA

我之前安装的10.1版本用不了,只能重新安装11.X的CUDA。
各个版本CUDA下载地址:
https://developer.nvidia.com/cuda-toolkit-archive
我直接下载最新的11.6.

直接下载即可。安装过程参考我之前的这篇博文
在这里插入图片描述


可直接默认。

喝杯茶等一等。

在这里插入图片描述

环境变量会自己修改好,不需要重新配置。
打开CMD查看版本:

nvcc --version

二、cuDNN下载

到官网查看CUDA和cuDNN版本对应关系。
CUDA和cuDNN版本对应关系

找到对应的版本下载好就行,我选择的是11.x的
可能需要注册账号密码,其实有时候挺卡的,不过注册应该还是比较简单的。注册好后下载时候还需要填一个表单,随便填就行,机构随便输入一个,会自动补全,选上就行,提交后会自动下载好。
在这里插入图片描述

三、cuDNN配置

解压刚才下载好的文件,会得到下列文件。
在这里插入图片描述
将上面三个文件夹复制到CUDA安装路径里面。我的安装路径是默认的,所以在:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6

四、pytorch环境配置

常见指令参考我这篇博文

①、创建虚拟环境

我创建一个名为Detect的环境。python使用3.8。打开anaconda prompt。

conda create -n Detect python=3.8

进入环境:

activate Detect

安装pytorch
指令可以参考官网:

本来以为我下的11.6不行,以为pytorch最高支持11.3的,不过居然可以用。

pip3 install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio===0.11.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html


至此,配置成功。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

血狼傲骨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值