一元线性回归的详细推导过程

下面是一元线性回归的详细求解过程。

假设一元线性回归的最佳直线方程为:

y = ax + b                                          (1)

对于一个样本点x_{i} ,有预测值为:

\hat{y}_{i} = ax_{i} + b                                        (2)

这个样本点的真值为y_{i} ,要想获得最佳拟合方程,就需要使真值y_{i} 和 预测值\hat{y}_{i} 之间的差值最小,为了后面方便求极值,使用两个值差的平方:

\left ( y_{i} - \hat{y}_{i} \right )^{2}                                             (3)

当把所有样本\left ( x_{1}, x_{2}, x_{3},\cdots , x_{m} \right )考虑进来时,上式则为:

\sum_{i=1}^{m}\left ( y_{i} - \hat{y}_{i} \right )^{2}                                       (4)

得到上式后,现在的目标就是使上式尽可能的小,将式(2)代入上式,可得:

\sum_{i=1}^{m}\left ( y_{i} - ax_{i}-b \right )^{2}                             (5)

此时的目标是找到a和b,使得式(5)尽可能的小,这就转化成了最优化问题:

J\left ( a,b \right )=\sum_{i=1}^{m}\left ( y_{i} -ax_{i}-b\right )^{2} \left            (6)               

要求上式的最小值,其实就是求该式的极值,需要对上式进行求导,导数为0的位置就是极值的位置,分别对a和b求导:

\frac{\partial J\left ( a,b \right )}{\partial a} = 0          \frac{\partial J\left ( a,b \right )}{\partial b} = 0      (7)

从式(6)可以看出,括号里,a的系数是x_{i},b的系数是-1,明显对b求导更简单,这里先对b求导:

\frac{\partial J\left ( a,b \right )}{\partial b}=\sum_{i=1}^{m}2\left ( y_{i}-ax_{i}-b \right )\left ( -1 \right )=0     (8)

对式(8)化简,去掉其中的-2,得:

\sum_{i=1}^{m}\left ( y_{i}-ax_{i}-b \right )=0                         (9)

将式(9)的括号去掉,得:

\sum_{i=1}^{m}y_{i} -a\sum_{i=1}^{m}x_{i}-\sum_{i=1}^{m}b=0              (10)

式(10)的第三项其实就是mb,可写为:

\sum_{i=1}^{m}y_{i} -a\sum_{i=1}^{m}x_{i}-mb=0                  (11)

将式(11)的mb拿到一侧,得:

mb=\sum_{i=1}^{m}y_{i} -a\sum_{i=1}^{m}x_{i}                        (12)

式(12)的等式两边同时除以m,得:

b= \frac{\sum_{i=1}^{m}y_{i}}{m} - \frac{a\sum_{i=1}^{m}x_{i}}{m}                   (13)

式(13),第一项中所有y_{i}的和除以m其实就是y_{i}的平均值,第二项中所有x_{i}的和除以m就是x_{i}的平均值,所以,式(13)可写为:

b = \bar{y} - a\bar{x}                                           (14)

式(14)就是b的结果,然后基于式(6)再对a进行求导:

\frac{\partial J\left ( a,b \right )}{\partial a}=\sum_{i=1}^{m}2\left ( y_{i}-ax_{i}-b \right )\left ( -x_{i} \right )=0     (15)

式(15)可化简为:

\sum_{i=1}^{m}\left ( y_{i}-ax_{i}-b \right )x_{i} =0                    (16)

将b的结果代入上式,得:

\sum_{i=1}^{m}\left ( y_{i}-ax_{i}-\bar{y}+a\bar{x} \right )x_{i} =0           (17)

将上式的x_{i}乘到括号里,得:

\sum_{i=1}^{m}\left ( x_{i}y_{i}-a\left (x_{i} \right )^{2}-x_{i}\bar{y}+a\bar{x}x_{i} \right ) =0    (18)

把上式中含有a的项放到一起,得:

\sum_{i=1}^{m}\left ( x_{i}y_{i}-x_{i}\bar{y} \right )-a\sum_{i=1}^{m}\left ( x_{i}^{2}-\bar{x}x_{i} \right ) =0   (19)

再把a放到等式的左边,其它部分放到等式右边,可求得a的值为:

a = \frac{\sum_{i=1}^{m}\left ( x_{i}y_{i}-x_{i}\bar{y} \right )}{\sum_{i=1}^{m}\left ( x_{i}^{2}-\bar{x}x_{i} \right )}                                (20)

此时已经求得了a和b的值,这里对式(20)进一步处理,分子中的第二项可做如下转换:

\sum_{i=1}^{m}x_{i}\bar{y}=\bar{y}\sum_{i=1}^{m}x_{i} = m\bar{y}\bar{x} = \bar{x}\sum_{i=1}^{m}y_{i} = \sum_{i=1}^{m}\bar{x}y_{i}    (21)

其中,\bar{x}\bar{y}是常数,则

m\bar{y}\bar{x} = \sum_{i=1}^{m}\bar{x}\bar{y}            (22)

基于式(21)和式(22)对(20)进行变换,得下式。由式(21)可看出,式(23)分子的第三项和第四项相等,分母的第三项与第四项其实就是将分子的第三项与第四项中的y变为了x。所以,分母的第三项和第四项也是相等的。

a = \frac{\sum_{i=1}^{m}\left ( x_{i}y_{i}-x_{i}\bar{y} - \bar{x}y_{i} + \bar{x}\bar{y} \right )}{\sum_{i=1}^{m}\left ( x_{i}^{2}-\bar{x}x_{i} - \bar{x}x_{i} +\bar{x}^{2}\right )}     (23)

式(23),进一步可以合并为:

a = \frac{\sum_{i=1}^{m}\left ( x_{i}\left ( y_{i}-\bar{y} \right ) - \bar{x}\left ( y_{i}-\bar{y} \right ) \right )}{\sum_{i=1}^{m}\left ( x_{i}^{2}-2\bar{x}x_{i} +\bar{x}^{2}\right )}  (24)

即:

a = \frac{\sum_{i=1}^{m}\left ( x_{i}-\bar{x} \right )\left ( y_{i}-\bar{y} \right )}{\sum_{i=1}^{m}\left ( x_{i}-\bar{x} \right )^{2}}                (25)

此时就找了使得式(5)尽可能的小a和b,即:

a = \frac{\sum_{i=1}^{m}\left ( x_{i}-\bar{x} \right )\left ( y_{i}-\bar{y} \right )}{\sum_{i=1}^{m}\left ( x_{i}-\bar{x} \right )^{2}}b = \bar{y} - a\bar{x}      (26)

以上就是一元线性回归的详细求解过程,由于是一元,这里的\bar{x}\bar{y}比较容易得到,a和b也容易求得。但是,对于多元线性回归的情况,系数的求解需要使用到矩阵,而更多求解其它目标函数使用的是梯度下降法。

 

  • 33
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
一元线性回归的目标是找到一条直线来拟合数据,使得拟合线距离数据点的误差最小化。最小二乘法是一种常见的用来求解线性回归参数的方法。 假设我们有一组数据集合 {(x1, y1), (x2, y2), ..., (xn, yn)},其中 xi 是自变量,yi 是因变量。一元线性回归模型可以表示为 y = β0 + β1*x,其中 β0 和 β1 是待求的参数。 最小二乘法的目标是找到使得误差平方和最小化的参数值。我们定义误差 e = y - (β0 + β1*x),其中 e 是实际值与预测值之间的差异。我们将误差平方和定义为损失函数,即 L = ∑(e^2) = ∑((y - (β0 + β1*x))^2)。我们的目标是最小化损失函数 L。 为了求解最小二乘法的参数,我们需要对损失函数 L 进行优化。我们可以通过对 β0 和 β1 分别求导,令导数为 0,从而得到参数的闭式解。 首先对 β0 求导: ∂L/∂β0 = -2∑(y - (β0 + β1*x)) 令导数为 0,得到: ∑y - n*β0 - β1*∑x = 0 解出 β0,得到: β0 = (∑y - β1*∑x)/n 然后对 β1 求导: ∂L/∂β1 = -2∑x(y - (β0 + β1*x)) 令导数为 0,得到: ∑xy - β0*∑x - β1*∑(x^2) = 0 将 β0 的值代入上式,得到: ∑xy - (∑y - β1*∑x)/n * ∑x - β1*∑(x^2) = 0 整理后可得: ∑xy - (∑x*∑y)/n = β1*(∑(x^2) - (∑x)^2/n) 解出 β1,得到: β1 = (∑xy - (∑x*∑y)/n) / (∑(x^2) - (∑x)^2/n) 至此,我们得到了一元线性回归最小二乘法的参数推导

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值