一元(多元)线性回归推导

一元线性回归

设模型为一元线性函数:
y = w 1 x + w 0 y = w_1 x + w_0 y=w1x+w0
现有样本: ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) {(x_1, y_1), (x_2, y_2),\dots, (x_n, y_n)} (x1,y1),(x2,y2),,(xn,yn), 用于拟合这个一元线性函数,得到 w 1 ∗ , w 0 ∗ w_1^*,w_0^* w1,w0

y ^ i \hat y_i y^i 为拟合后的预测值,指定 差平方 为 损失函数 L ( w 1 ∗ , w 0 ∗ ) L(w_1^*, w_0^*) L(w1,w0),要使得其最小,从而得到 w 1 ∗ , w 0 ∗ w_1^*, w_0^* w1,w0,所以有目标:
arg min ⁡ w 1 ∗ , w 0 ∗ L ( w 1 ∗ , w 0 ∗ ) \argmin_{w_1^*, w_0^*} L(w_1^*, w_0^*) w1,w0argminL(w1,w0)
L ( w 1 ∗ , w 0 ∗ ) = ∑ i = 1 n ( y ^ i − y i ) 2 (1) L(w_1^*, w_0^*) = \sum_{i=1}^n {(\hat y_i-y_i)^2} \tag{1} L(w1,w0)=i=1n(y^iyi)2(1)
y ^ i = w 1 ∗ x i + w 0 ∗ (2) \hat y_i = w_1^* x_i + w_0^* \tag{2} y^i=w1xi+w0(2)

结合 (1)(2)式, 有:

L = ∑ i = 1 n ( w 1 ∗ x i + w 0 ∗ − y i ) 2 = ∑ i = 1 n ( ( w 1 ∗ x i ) 2 + w 0 ∗ 2 + y i 2 + 2 w 1 w 0 ∗ x i − 2 w 1 ∗ y i x i − 2 w 0 ∗ y i ) (3) \begin{aligned}L & = \sum_{i=1}^n {(w_1^* x_i + w_0^* - y_i)^2}\\ & = \sum_{i=1}^n {((w_1^* x_i)^2 + {w_0^*}^2 + {y_i}^2 + 2 w_1 w_0^* x_i - 2 w_1^* y_i x_i - 2 w_0^* y_i)}\\ \end{aligned} \tag{3} L=i=1n(w1xi+w0yi)2=i=1n((w1xi)2+w02+yi2+2w1w0xi2w1yixi2w0yi)(3)

于 (3)式 分别对 w 1 ∗ , w 0 ∗ w_1^*, w_0^* w1,w0 求偏导,有:
∂ L ∂ w 0 ∗ = ∑ i = 1 n ( 2 w 0 ∗ + 2 w 1 ∗ x i + 2 y i ) = 2 n w 0 + 2 w 1 ∗ ∑ i = 1 n x i − 2 ∑ i = 1 n y i ∂ L ∂ w 1 ∗ = ∑ i = 1 n ( 2 x i 2 w 1 + 2 x i w 0 − 2 x i y i ) = 2 w 1 ∑ i = 1 n x i 2 + 2 w 0 ∑ i = 1 n x i − 2 ∑ i = 1 n x i y i \begin{aligned} \frac {\partial {L}}{\partial {w_0^*}} &= \sum_{i=1}^n {(2 w_0^*+ 2 w_1^* x_i + 2 y_i)} =2 n w_0 + 2 w_1^*\sum_{i=1}^n {x_i} - 2 \sum_{i=1}^n {y_i}\\ \frac {\partial {L}}{\partial {w_1^*}} &= \sum_{i=1}^n {(2 x_i^2 w_1 + 2x_i w_0 - 2 x_i y_i)} = 2 w_1 \sum_{i=1}^n {x_i^2} + 2 w_0 \sum_{i=1}^n {x_i} - 2 \sum_{i=1}^n {x_i y_i} \end{aligned} w0Lw1L=i=1n(2w0+2w1xi+2yi)=2nw0+2w1i=1nxi2i=1nyi=i=1n(2xi2w1+2xiw02xiyi)=2w1i=1nxi2+2w0i=1nxi2i=1nxiyi

令上式偏导等于 0:
{ n w 0 + w 1 ∗ ∑ i = 1 n x i − ∑ i = 1 n y i = 0 w 1 ∑ i = 1 n x i 2 + w 0 ∑ i = 1 n x i − ∑ i = 1 n x i y i = 0 (4) \left\{ \begin{aligned} n w_0 + w_1^*\sum_{i=1}^n {x_i} - \sum_{i=1}^n {y_i} &= 0\\ w_1 \sum_{i=1}^n {x_i^2} + w_0 \sum_{i=1}^n {x_i} - \sum_{i=1}^n {x_i y_i} &= 0 \end{aligned} \right . \tag{4} nw0+w1i=1nxii=1nyiw1i=1nxi2+w0i=1nxii=1nxiyi=0=0(4)

求解方程组(4),得:
{ w 0 = ∑ i = 1 n y i − w 1 ∑ i = 1 n x i n w 1 = ∑ i = 1 n x i y i − w 0 ∑ i = 1 n x i ∑ i = 1 n x i 2 (5) \left\{ \begin{aligned} w_0 &= \frac{\sum_{i=1}^n y_i - w_1 \sum_{i=1}^n x_i}{n}\\ w_1&= \frac{ \sum_{i=1}^n x_i y_i - w_0 \sum_{i=1}^n x_i}{ \sum_{i=1}^n x_i^2} \end{aligned} \right . \tag{5} w0w1=ni=1nyiw1i=1nxi=i=1nxi2i=1nxiyiw0i=1nxi(5)

方程组(5) 相互代入可得:
{ w 0 = ∑ i = 1 n y i − ∑ i = 1 n x i ∑ i = 1 n x i y i ( ∑ i = 1 n x i ) 2 n − ( ∑ i = 1 n x i ) 2 ∑ i = 1 n x i 2 w 1 = ∑ i = 1 n x i y i − w 0 ∑ i = 1 n x i ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 n (6) \left\{ \begin{aligned} w_0 &= \frac{\sum_{i=1}^n y_i - \frac{\sum_{i=1}^n {x_i} \sum_{i=1}^n {x_iy_i}}{(\sum_{i=1}^n x_i)^2}} {n - \frac{(\sum_{i=1}^n x_i)^2}{\sum_{i=1}^n x_i^2}}\\ w_1&= \frac{ \sum_{i=1}^n x_i y_i - w_0 \sum_{i=1}^n x_i}{ \sum_{i=1}^n x_i^2 - \frac{ {(\sum_{i=1}^n {x_i})}^2}{n}} \end{aligned} \right . \tag{6} w0w1=ni=1nxi2(i=1nxi)2i=1nyi(i=1nxi)2i=1nxii=1nxiyi=i=1nxi2n(i=1nxi)2i=1nxiyiw0i=1nxi(6)
于 (6)式 求出 w 1 w_1 w1, 就可以带入 方程组(5) 直接计算 w 0 w_0 w0

多元线性回归(最小二乘法)

以上方法类推到 w 2 , w 3 , ⋯ w_2,w_3,\cdots w2,w3,,就可以得到多元线性回归的解。
但是这样挨个挨个推导着实麻烦。

若直接有多元函数:
y = x w y = \mathbf x \mathbf w y=xw
其中, w = [ w 1 , w 2 , … , w n ] T , x = [ x 1 , x 2 , … , x n ] , x 1 = 1 \mathbf w = [w_1, w_2, \dots, w_n]^\mathrm T, \mathbf x = [x_1,x_2, \dots, x_n], x_1 = 1 w=[w1,w2,,wn]T,x=[x1,x2,,xn],x1=1
因为直接将函数的常数项视作变量,所以 x 1 = 1 x_1 = 1 x1=1

那么现在有多元线性回归的推导:
w ^ \hat \mathbf w w^ 为求得的系数向量, y = [ y 1 , y 2 , … , y n ] T \mathbf y =[y_1,y_2,\dots, y_n]^\mathrm T y=[y1,y2,,yn]T X = [ x 1 , x 2 , … , x n ] T \mathbf X = [\mathbf x_1, \mathbf x_2, \dots, \mathbf x_n]^\mathrm T X=[x1,x2,,xn]T,指定损失函数:
L ( w ^ ) = ∥ y − X w ^ ∥ 2 2 L(\hat \mathbf w) = \Vert {\mathbf y - \mathbf X\hat \mathbf w} \Vert_2^2 L(w^)=yXw^22
有求解目标:
arg min ⁡ w ∥ y − X w ^ ∥ 2 2 \argmin_{\mathbf w} \Vert \mathbf y - \mathbf X \hat \mathbf w \Vert_2^2 wargminyXw^22
∥ y − X w ^ ∥ 2 2 = ( y − X w ^ ) T ( y − X w ^ ) = ( y T − w ^ T X T ) ( y − X w ^ ) = y T y + w ^ T X T X w ^ − w ^ T X T y − y T X w ^ \begin{aligned} \Vert \mathbf y - \mathbf X \hat \mathbf w \Vert_2^2 &= (\mathbf y - \mathbf X \hat \mathbf w)^\mathrm T(\mathbf y - \mathbf X \hat \mathbf w)\\ &= (\mathbf y^\mathrm T - \hat \mathbf w^\mathrm T \mathbf X^\mathrm T)(\mathbf y - \mathbf X \hat \mathbf w)\\ &=\mathbf y^\mathrm T \mathbf y + \hat \mathbf w^\mathrm T \mathbf X^\mathrm T\mathbf X \hat \mathbf w - \hat \mathbf w^\mathrm T \mathbf X^\mathrm T \mathbf y - \mathbf y^\mathrm T \mathbf X \hat \mathbf w \end{aligned} yXw^22=(yXw^)T(yXw^)=(yTw^TXT)(yXw^)=yTy+w^TXTXw^w^TXTyyTXw^

有矩阵求导公式:
d x T A x d x = ( A + A T ) x d x T A d x = A d A x d x = A T \begin{aligned} \frac{\rm d\mathbf x^\mathrm T \mathbf A \mathbf x}{\rm d \mathbf x} &= (\mathbf A + \mathbf A^\mathrm T)\mathbf x\\ \frac{\rm d\mathbf x^\mathrm T \mathbf A}{\rm d \mathbf x} &= \mathbf A\\ \frac{\rm d\mathbf A \mathbf x}{\rm d \mathbf x} &= \mathbf A^\mathrm T \end{aligned} dxdxTAxdxdxTAdxdAx=(A+AT)x=A=AT

L ( w ^ ) L(\hat \mathbf w) L(w^) 求导:
∂ L ( w ^ ) ∂ w ^ = 2 X T X w ^ − X T y − X T y = 2 X T X w ^ − 2 X T y \frac{\partial L(\hat \mathbf w)}{\partial \hat\mathbf w} = 2\mathbf X^\mathrm T \mathbf X \hat\mathbf w - \mathbf X^\mathrm T \mathbf y - \mathbf X^\mathrm T \mathbf y \\ = 2\mathbf X^\mathrm T \mathbf X \hat\mathbf w - 2 \mathbf X^\mathrm T \mathbf y w^L(w^)=2XTXw^XTyXTy=2XTXw^2XTy
为求极值,令导数等于 0,可得
w ^ = ( X T X ) − 1 X T y \hat\mathbf w = (\mathbf X^\mathrm T \mathbf X)^{-1} \mathbf X^\mathrm T \mathbf y w^=(XTX)1XTy

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值