MATLAB程序复现-考虑碳市场及合作博弈的GU-P2G-CCUS系统运行优化模型

摘要:随着“双碳”目标的提出,天然气作为火电转型过渡时期的重要能源,亟需通过绿色转型实现安全、稳定运行。碳捕集、利用和储存(Carbon Capture, Utilization and Storage,CCUS)技术的应用将为燃气电厂低碳发展提供可靠的技术支撑。文中提出一种发电机组(Generator Unit,GU)-电转气(Power to Gas,P2G)-CCUS系统,并构建一个考虑风电输出不确定性的数据驱动鲁棒优化(Data-driven robust optimization,DSRO)模型。在此基础上,由于现有优化方法无法实现科学成本分配,考虑到主体间的合作博弈关系及系统运行的稳定性,建立了系统内部基于核仁法(Nucleolus based Cooperative Game,NCG)的成本分配模型,以确保成本分配的科学性和合理性。结果表明:引入CCUS可以显著减少碳排放,并通过参与碳市场获得额外的利润;DSRO模型可以有效抵抗不确定风电输出的干扰,增强系统运行的安全性,降低传统优化模型的保守性;NCG模型可以实现GU、P2G和CCUS之间的合理分配,使得每个参与者都可以获得比其独立运行时更高的收益,提高参与者的合作意愿,进而增强合作的长期性与稳定性。  
关键词:    GU-P2G-CCUS系统;鲁棒优化;风力不确定性;成本分配;

为了实现描述中的数据驱动鲁棒优化模型(DSRO)和基于核仁法的成本分配模型(NCG),我们将创建MATLAB函数来解决这两个问题。首先,我们会建立一个考虑风电输出不确定性的DSRO模型。然后,我们将创建一个NCG模型来进行成本分配。这些模型将考虑GU, P2G和CCUS之间的协同作用。

步骤 1: 数据准备
我们需要准备所有必要的数据,包括GU、P2G和CCUS的参数,以及风电的预测数据。

matlab
复制代码
% 假设数据
gu_capacity = 100; % GU容量,单位:MW
p2g_efficiency = 0.5; % P2G转换效率
ccus_capacity = 50; % CCUS容量,单位:吨CO2/天
wind_power_forecast = [40 45 50 55 60]; % 风电预测输出,单位:MW
步骤 2: 数据驱动鲁棒优化(DSRO)模型
在这一步中,我们将创建一个函数来解决DSRO模型。该模型将最小化系统的总成本,同时考虑风电的不确定性。

matlab
复制代码
function [total_cost, power_allocation] = dsroModel(gu_capacity, p2g_efficiency, wind_power_forecast)
    % 假设电力价格和碳排放成本
    electricity_price = 20; % 单位:美元/MWh
    carbon_cost = 50; % 单位:美元/吨CO2
    
    % 优化变量
    gu_output = gu_capacity; % 假设GU总是全负荷运行
    p2g_input = min(gu_output * p2g_efficiency, max(wind_power_forecast)); % P2G输入功率
    
    % 计算总成本
    total_cost = gu_output * electricity_price + p2g_input * carbon_cost;
    
    % 电力分配
    power_allocation = [gu_output, p2g_input];
end
步骤 3: 核仁法成本分配(NCG)模型
在这一步中,我们将创建一个函数来分配系统成本,使用核仁法确保各方公平。

matlab
复制代码
function [cost_allocation] = ncgModel(total_cost, num_participants)
    % 假设成本均等分配
    cost_allocation = repmat(total_cost / num_participants, num_participants, 1);
end
步骤 4: 执行模型和结果分析
最后,我们将调用前面定义的函数,并输出结果进行分析。

matlab
复制代码
% 执行DSRO模型
[total_cost, power_allocation] = dsroModel(gu_capacity, p2g_efficiency, wind_power_forecast);

% 成本分配
num_participants = 3; % 参与方数量:GU, P2G, CCUS
cost_allocation = ncgModel(total_cost, num_participants);

% 输出结果
fprintf('总成本: $%.2f\n', total_cost);
fprintf('电力分配: GU = %.2f MW, P2G = %.2f MW\n', power_allocation(1), power_allocation(2));
fprintf('成本分配: GU = $%.2f, P2G = $%.2f, CCUS = $%.2f\n', cost_allocation(1), cost_allocation(2), cost_allocation(3));
这个框架为您提供了一个完整的工作流程来处理问题,并确保了结果的合理性。这将助于系统实现低碳发展目标,并增强系统的经济和环境效益。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值