给你整数 zero ,one ,low 和 high ,我们从空字符串开始构造一个字符串,每一步执行下面操作中的一种:
将 ‘0’ 在字符串末尾添加 zero 次。
将 ‘1’ 在字符串末尾添加 one 次。
以上操作可以执行任意次。
如果通过以上过程得到一个 长度 在 low 和 high 之间(包含上下边界)的字符串,那么这个字符串我们称为 好 字符串。
请你返回满足以上要求的 不同 好字符串数目。由于答案可能很大,请将结果对 10^9 + 7 取余 后返回。
示例 1:
输入:low = 3, high = 3, zero = 1, one = 1
输出:8
解释:
一个可能的好字符串是 “011” 。
可以这样构造得到:“” -> “0” -> “01” -> “011” 。
从 “000” 到 “111” 之间所有的二进制字符串都是好字符串。
示例 2:
输入:low = 2, high = 3, zero = 1, one = 2
输出:5
解释:好字符串为 “00” ,“11” ,“000” ,“110” 和 “011” 。
完整代码
参考以下作者的代码。
class Solution {
public:
int countGoodStrings(int low, int high, int zero, int one) {
const int MOD = 1'000'000'007;
int ans = 0;
vector<int> f(high + 1);
f[0] = 1;
for (int i = 1; i <= high; i++) {
if (i >= zero) f[i] = f[i - zero] % MOD;
if (i >= one) f[i] = (f[i] + f[i - one]) % MOD;
if (i >= low) ans = (ans + f[i]) % MOD;
}
return ans;
}
};
解析
参考我画的图,这张图是实例2。这道题的核心思路就是弄明白,每个拥有较长字符串,实际上是由一个相对较短的字符串加上Zero个0或者加上One个1构成的,然后这个较短的字符串,又是由一个更短的字符串,加上Zero个0或者One个1组成的。
这道题的题解是从每一个字符串的长度入手,进行统计。比如当字符串长度为3的时候,可以将这个字符串分为两大类:一类是0开头,一类是1开头。0开头的有011、000。 1开头的有110。想知道这一层0开头的数量有几个,实际上就是找到能组成0开头字符串的较短字符串数量。而我们可以知道,无论是011还是000,都是由长度为2的字符串,这个字符串只要存在,不管他是11还是00,**只要长度是2的较短字符串,加上0,都必定是长度为3,开头为0的字符串。**同理,长度为3,1开头的字符串是110,减去One(One = 2)个1后就是长度为1的字符串,不管他是什么,只要他存在(在图中只有"0"),加上11后都是1开头的长度为3的字符串。
所以在代码中使用名为f的vector容器来储存每个长度字符串的数量,而ans用来储存在low和high之间的字符串,在实例2中low=2,high=3,所以一共有011,110,000,11,00五个字符串,ans=5。