给你一个整数数组 nums 。nums 的每个元素是 1,2 或 3。在每次操作中,你可以删除 nums 中的一个元素。返回使 nums 成为 非递减 顺序所需操作数的 最小值。
示例 1:
输入:nums = [2,1,3,2,1]
输出:3
解释:
其中一个最优方案是删除 nums[0],nums[2] 和 nums[3]。
示例 2:
输入:nums = [1,3,2,1,3,3]
输出:2
解释:
其中一个最优方案是删除 nums[1] 和 nums[2]。
示例 3:
输入:nums = [2,2,2,2,3,3]
输出:0
解释:
nums 已是非递减顺序的。
提示:
1 <= nums.length <= 100
1 <= nums[i] <= 3
动态规划
class Solution {
public:
int minimumOperations(vector<int>& nums) {
int n = nums.size();
vector<int> g;
for(int x : nums){
auto it = ranges::upper_bound(g, x);
if(it == g.end()) g.push_back(x);
else *it = x;
}
return nums.size() - g.size();
}
};
时间复杂度:O(nlogn),其中 n 为 nums 的长度。
空间复杂度:O(n)。
这个采用了c++的内置函数upper_bound,对于每个nums元素x,使用二分查找动态数组g来查找比x大且最接近x的位置,然后用迭代器it指向这个位置。
如果迭代器it指向了g.end(),那么就说明g中没有比x大的元素,那么x就可以push到g里面来构成一个更长的虚拟递增子序列。为什么是虚拟,下面我会谈到。如果it指向g中的某个位置,那么就用x替换掉那个元素,因为对于被替换的元素的前一个元素,肯定比x要小,且被替换的元素大于x,所以说x与被替换元素的上一个元素的值会更加接近,在构造最长递增子序列过程中,我们希望在长度相同的情况下,尽可能让这个虚拟序列更加接近。
为什么说g里面是个虚拟的递增子序列,不是真正的子序列。因为我们在用x替换g里面的元素的时候,由于x在nums中的位置肯定都要比g中所有元素都要大,所以替换过去后,并不会马上构成一个最长递增子序列。什么时候会构成真正的递增子序列?那就是在被替换的元素是g里面最后一个元素的时候,这时候虚拟的递增子序列才会变成真正的子序列。
举个例子:nums = [1,2,4,5,3,7,4,6]
一开始我们得到g=[1,2,4,5],然后遇到x=3,替换后g=[1,2,3,5],这时候g就是虚拟的递增子序列,因为很明显nums中没有这么一个递增子序列。接着遇到x=7,推入g,g=[1,2,3,5,7]。接着遇到x=4,替换掉g中的5,g=[1,2,3,4,7]。最后遇到x=6,替换掉了g中的最后一个元素7,g=[1,2,3,4,6],这时候我们的最长子序列才真正变成了[1,2,3,4,6]。
知道了最长递增子序列的长度后,我们用nums的大小减去g的大小,就是我们需要删除操作的次数。
这道题可以用状态机DP来进行优化时间复杂度为O(n)