PCA 原理及其在图像压缩中的应用

PCA(主成分分析)用于去除样本数据的冗余信息,通过白化处理和求解协方差矩阵的特征向量来实现。保留主要分布方向,降低维度的同时最小化信息损失。在图像压缩中,PCA通过对图像进行降维处理,达到数据压缩的效果,增强了算法对亮度变化的鲁棒性。
摘要由CSDN通过智能技术生成

PCA(主成分分析),Principle Component Ananlysis

如果有很多个样本数据,需要从这些样本数据中找出“冗余”的信息,然后剔除这些冗余信息,PCA就可以完成这个任务。

将所有的样本数据 xi (列向量)拼成一个矩阵 { x1,x2,...,xi,...,xK }。
第一步是预处理,要保证数据的均值为0。那么

μ:=1Ki=1Kxi

xi:=xiμ

求这
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值