MIT单变量微积分笔记1——导数1

本文介绍了导数的基本概念,它在物理和几何中的意义。导数是求解变化率和切线斜率的工具。接着,文章讨论了幂函数、三角函数的导数以及函数可导的条件。特别指出,可导的函数一定连续,但连续函数不一定可导。最后,概述了和、差、积、商及链式求导法则。
摘要由CSDN通过智能技术生成

导数的概念:

导数是高数中的重要概念,被应用于多种学科。

从物理意义上讲,导数就是求解变化率的问题;从几何意义上讲,导数就是求函数在某一点上的切线的斜率。

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处取得增量Δx(点x0+Δx仍在该邻域内)时,相应地函数y取得增量Δy;如果Δy与Δx之比当Δx->0时的极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数,记作f’(x0) :

f’(x)的完整说法是求f(x)在定义域某一点的导数,所以x是已知的,求某一点的导数,当然要知道这个点是什么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值