引言
大型语言模型(LLM)近年来在自然语言处理领域取得了巨大的进展。这些模型具备理解和生成人类语言的能力,使得它们在各种应用中得到了广泛的应用。然而,对于开发者来说,如何高效地集成和使用这些LLM,尤其是异步和批处理支持,是一个值得探讨的话题。在这篇文章中,我们将深入探讨LLM的集成特性,提供实用的代码示例,并讨论常见的挑战与解决方案。
主要内容
1. LLM的可运行接口
所有的LLM集成都实现了可运行接口(Runnable interface),这为异步、流式和批处理提供了基本的支持。默认情况下,这些功能通过同步方法的调用实现,允许其他异步函数在LLM执行时进行进度。虽然异步执行和批处理可以提升性能,但流式输出仍需LLM提供者的原生支持。
2. 异步与流式支持
缺乏异步或流式支持可能会导致处理效率低下。例如,异步支持默认为调用asyncio的默认线程池执行器中的同步方法。这允许在后台线程中执行LLM的调用,从而让应用程序的其他部分继续运行。对于流式支持,默认情况下返回一个单值的迭代器,不能实现逐token的流式处理。
3. 批处理支持
批处理支持默认通过线程池执行器(同步批处理)或asyncio.gather(异步批处理)来实现。这种方法虽然有效,但需要注意控制并发性,以避免过多的资源占用。
代码示例
以下是一个使用异步调用LLM的基本示例: