大模型
文章平均质量分 85
jieshenai
这个作者很懒,什么都没留下…
展开
-
vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%
本文记录了使用 vllm 部署 GLM4-9B-Chat 模型进行 Zero-Shot 文本分类的实验过程与结果。通过对 AG_News 数据集的测试,研究发现大模型在直接进行分类时的准确率为 77%。然而,让模型给出分类原因描述(reason)后,准确率显著提升至 83%,提升幅度达 6%。这一结果验证了引入 reasoning 机制的有效性。文中详细介绍了实验数据、提示词设计、模型推理方法及评估手段。原创 2024-08-23 16:33:11 · 1135 阅读 · 0 评论 -
gpt-4o-mini 等大模型的第三方中转API接口教程
摘要:本文介绍了如何在Python环境中使用gpt-4o-mini模型,包括Anaconda的安装与配置、创建新的Python虚拟环境、安装langchain与openai相关包、接入OpenAI API(包括使用第三方API站点以规避地域限制)的方法。详细步骤涵盖了环境变量的设置、API密钥的管理、模型调用的代码示例及消费估算。此外,还提供了优化大模型使用效率的建议,如使用多线程、令牌池,以及编写有效提示词的重要性。最后,推荐了相关教程和提示词编写技巧,旨在帮助读者更好地利用大模型进行自然语言处理任务。原创 2024-08-21 13:10:09 · 2398 阅读 · 4 评论 -
使用大模型从政府公文中抽取指标数据
本文介绍了利用LangChain结合Ollama的qwen2:7b模型,从政府工作报告中高效提取全国市级单位年度生产总值增长指标。通过精准文本筛选、few-shot提示和结构化输出,实现了快速准确的数据抽取。实验表明,qwen2模型虽小但性能优异,展现出大模型在自然语言处理中的强大能力。同时,文章还对比了不同模型的优劣势,提供了一些优化建议。原创 2024-08-14 23:44:51 · 830 阅读 · 0 评论 -
LangGraph 自定义工具调用,大模型使用加法和乘法工具的工作流实现
文章提出了采用few-shot学习的方法,通过给大模型提供几个示例来激活其工具调用能力,而非进行复杂的微调。文章通过构建工作流结构,包括llm节点(生成工具调用和结果输出)和action节点(运行工具调用并输出结果),展示了自动化实现工具调用和结果处理的流程。工作流的优势在于能够简化流程,自动处理大模型输出、工具调用及结果反馈的循环。原创 2024-08-14 20:40:22 · 1173 阅读 · 0 评论 -
glm4-9B-chat,使用提示工程激活模型最大潜力
作者探讨了如何通过提示词优化大模型的文本生成能力,特别是通过使用Ollama和LangChain来增强细节丰富度和生成范围。文章介绍了GLM4-9B模型的独特性,尤其是其能通过巧妙提示词实现广泛的文本生成能力。作者还分享了一些实用的提示工程技巧,如何引导模型绕过拒答并生成所需内容。原创 2024-08-13 10:18:34 · 733 阅读 · 0 评论 -
利用langchain 做大模型 Few-shot Learning 提示,包括固定和向量相似的动态样本筛选
本文介绍了Few-shot Learning,相对于大模型微调,通过提供少量样本示例来提升模型在特定任务上的表现。固定样本提示每次使用相同的示例,而动态样本提示则根据当前任务选择相似的示例。通过示例代码展示了如何在LangChain中实现固定和动态样本提示,以及如何利用向量相似度算法选择最相似的样本进行推理,从而提高模型性能。原创 2024-08-01 20:00:15 · 1042 阅读 · 0 评论 -
llama-factory 系列教程 (六),linux shell 脚本自动实现批量大模型的训练、部署与评估
使用linux shell 脚本,自动化批量处理大模型的微调、部署与评估。无需人工逐个交互处理,减少人工的精力和时间。原创 2024-07-31 22:18:15 · 1246 阅读 · 0 评论 -
llama-factory 系列教程 (五),SFT 微调后的模型,结合langchain进行推理
使用Llamafactory微调模型后,完成vllm的API本地部署,再利用 langchain 工具进行推理。原创 2024-07-30 21:49:15 · 815 阅读 · 0 评论 -
langchain使用jina-embeddings构建Chroma向量库,解决加载模型初始化失败
使用 `{"trust_remote_code":True}` 传递给 langchain_community.embeddings 的 SentenceTransformerEmbeddings ,逐步解析 `jinaai/jina-embeddings-v2-base-en` 编码模型初始化加载异常的问题。原创 2024-07-28 11:47:14 · 874 阅读 · 0 评论 -
阿里云盘 PAI,免费三个月的GPU资源领取,适合缺卡的学生
白嫖阿里云人工智能平台PAI三个月 :上传的数据集、文件、Python 环境会一直存在,关机之后不会删除;原创 2024-04-22 13:28:01 · 818 阅读 · 0 评论 -
llama-factory SFT 系列教程 (四),lora sft 微调后,使用vllm加速推理
首先使用 llama-factory 微调,得到微调后的 lora 权重;由于 vllm 并没有支持所有的模型;故通用的方式是 将 lora 权重和大模型融合成新的大模型,再由 vllm 推理;在使用 alpaca 样式的数据集微调时,llama-factory 框架在训练时,会自动在prompt 添加 template。所以,在微调大模型后,使用vllm推理时,也要给 vllm 传入 封装好的template。原创 2024-04-20 21:56:05 · 8744 阅读 · 11 评论 -
大模型预测结果导入到Doccano,人工修正预测不准的数据
展示大模型预测输出的数据格式;展示Doccano 命名实体识别导入的数据集格式;提供将大模型输出数据转为Doccano 导入数据集格式代码;原创 2024-04-17 12:41:23 · 562 阅读 · 0 评论 -
llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战
利用 llama-factory 框架,基于 chatglm3-6B 模型 做命名实体识别任务;原创 2024-04-12 23:42:04 · 2698 阅读 · 13 评论 -
llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署
本文为 llama-factory SFT系列教程的第二篇;实现了在自定义数据集上 lora 微调大模型;接着融合lora权重进行大模型推理的功能原创 2024-04-12 17:28:56 · 12556 阅读 · 9 评论 -
llama-factory SFT系列教程 (一),大模型 API 部署与使用
llama-factory 教程,实现大模型 api 部署;使用 llama_factory 的 API 部署有 vllm加速推理;原创 2024-04-11 22:40:59 · 9845 阅读 · 21 评论 -
vllm 本地大模型加速推理
使用 modelscope 的 chatglm3-6B,调用 vllm 加速推理,推理速度快很多;我的显卡显存为 24G;chatglm3-6B,如果不用vllm,我的显存不够,必须使用half才能放进显存;使用 vllm 后,vllm 加载的大模型模型权重占用空间会小一点;不使用half,恰好能放进我的显存空间;原创 2024-04-11 12:37:41 · 2102 阅读 · 4 评论 -
使用向量检索和rerank 在RAG数据集上实验评估hit_rate和mrr
使用 向量检索 和 rerank 在给定RAG评估数据集上的实验计算 hit_rate 和 mrr;对比了使用 rerank 和 不使用 rerank的实验结果;基于RAG评估数据集,构建nodes节点;构建自定义的检索器,在检索器中实现 向量检索和 rerank;原创 2024-04-06 22:16:17 · 1520 阅读 · 16 评论 -
大模型生成RAG评估数据集并计算hit_rate 和 mrr
本文使用大模型自动生成RAG 问答数据集。使用BM25关键词作为检索器,然后在问答数据集上评估该检索器的效果。输入是一篇文本,使用llamaindex加载该文本,使用prompt让大模型针对输入的文本生成提问。l利用 chatglm3-6B 构建CustomLLM;使用prompt和chatglm,结合文本生成对应的问题,构建RAG问答数据集;构建基于关键词的检索器;评估在数据集上的结果;原创 2024-04-05 17:53:27 · 2120 阅读 · 7 评论 -
llama-index 结合chatglm3-6B 利用RAG 基于文档智能问答
使用llama-index结合m3e、chatglm3-6B 基于RAG做智能问答原创 2024-03-28 10:44:16 · 2066 阅读 · 0 评论 -
本地qwen 大模型,基于FastAPI构建API接口使用
使用modelscope 下载千问7B模型,利用FastAPI部署成在线的API接口;使用history历史对话多轮问答数据,实现多轮对话;原创 2024-03-27 23:13:32 · 2640 阅读 · 4 评论 -
基于m3e编码模型的RAG 向量相似检索
使用m3e编码模型,利用modelscope下载模型权重。使用langchain的faiss API ,构建向量库,计算用户输入文本与向量库中文本的相似度。原创 2024-03-19 09:46:00 · 988 阅读 · 0 评论