vllm 部署GLM4模型进行 Zero-Shot 文本分类实验,让大模型给出分类原因,准确率可提高6%

简介

本文记录了使用 vllm 部署 GLM4-9B-Chat 模型进行 Zero-Shot 文本分类的实验过程与结果。通过对 AG_News 数据集的测试,研究发现大模型在直接进行分类时的准确率为 77%。然而,让模型给出分类原因描述(reason)后,准确率显著提升至 83%,提升幅度达 6%。这一结果验证了引入 reasoning 机制的有效性。文中详细介绍了实验数据、提示词设计、模型推理方法及评估手段。

复现自这篇论文:Text Classification via Large Language Models. https://arxiv.org/abs/2305.08377 让大模型使用reason。

该项目的文件结构如下所示:

├── cls_vllm.log
├── cls_vllm.py
├── data
│   ├── basic_llm.csv
│   └── reason_llm.csv
├── data_processon.ipynb
├── eval.ipynb
├── output
│   ├── basic_vllm.pkl
│   └── reason_vllm.pkl
├── settings.py
└── utils.py

数据集

现在要找一个数据集做实验,进入 https://paperswithcode.com/
找到 文本分类,看目前的 SOTA 是在哪些数据集上做的,文本分类. https://paperswithcode.com/task/text-classification

在这里插入图片描述

实验使用了 AG_News 数据集。若您对数据集操作技巧感兴趣,可以参考这篇文章:

datasets库一些基本方法:filter、map、select等. https://blog.csdn.net/sjxgghg/article/details/141384131

实验设置

settings.py 文件中,我们定义了一些实验中使用的提示词:

LABEL_NAMES = ['World', 'Sports', 'Business', 'Science | Technology']

BASIC_CLS_PROMPT = """
你是文本分类专家,请你给下述文本分类,把它分到下述类别中:
* World
* Sports
* Business
* Science | Technology

text是待分类的文本。请你一步一步思考,在label中给出最终的分类结果:
text: {text}
label: 
"""

REASON_CLS_PROMPT = """
你是文本分类专家,请你给下述文本分类,把它分到下述类别中:
* World
* Sports
* Business
* Science | Technology

text是待分类的文本。请你一步一步思考,首先在reason中说明你的判断理由,然后在label中给出最终的分类结果:
text: {text}
reason: 
label: 
""".lstrip()

data_files = [
    "data/basic_llm.csv",
    "data/reason_llm.csv"
]

output_dirs = [
    "output/basic_vllm.pkl",
    "output/reason_vllm.pkl"
]

这两个数据文件用于存储不同提示词的大模型推理数据:

  • data/basic_llm.csv
  • data/reason_llm.csv

数据集转换

为了让模型能够执行文本分类任务,我们需要对原始数据集进行转换,添加提示词。

原始的数据集样式,要经过提示词转换后,才能让模型做文本分类。

代码如下:

data_processon.ipynb

from datasets import load_dataset

from settings import LABEL_NAMES, BASIC_CLS_PROMPT, REASON_CLS_PROMPT, data_files

import os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'

# 加载 AG_News 数据集的测试集,只使用test的数据去预测
ds = load_dataset("fancyzhx/ag_news")

# 转换为 basic 提示词格式
def trans2llm(item):
    item["text"] = BASIC_CLS_PROMPT.format(text=item["text"])
    return item
ds["test"].map(trans2llm).to_csv(data_files[0], index=False)

# 转换为 reason 提示词格式
def trans2llm(item):
    item["text"] = REASON_CLS_PROMPT.format(text=item["text"])
    return item
ds["test"].map(trans2llm).to_csv(data_files[1], index=False)

上述代码实现的功能就是把数据集的文本,放入到提示词的{text} 里面。

模型推理

本文使用 ZhipuAI/glm-4-9b-chat. https://www.modelscope.cn/models/zhipuai/glm-4-9b-chat 智谱9B的chat模型,进行VLLM推理。

为了简化模型调用,我们编写了一些实用工具:

utils.py

import pickle
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from modelscope import snapshot_download


def save_obj(obj, name):
    """
    将对象保存到文件
    :param obj: 要保存的对象
    :param name: 文件的名称(包括路径)
    """
    with open(name, "wb") as f:
        pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)


def load_obj(name):
    """
    从文件加载对象
    :param name: 文件的名称(包括路径)
    :return: 反序列化后的对象
    """
    with open(name, "rb") as f:
        return pickle.load(f)
    


def glm4_vllm(prompts, output_dir, temperature=0, max_tokens=1024):
    # GLM-4-9B-Chat-1M
    max_model_len, tp_size = 131072, 1
    model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat')

    tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
    llm = LLM(
        model=model_dir,
        tensor_parallel_size=tp_size,
        max_model_len=max_model_len,
        trust_remote_code=True,
        enforce_eager=True,
    )
    stop_token_ids = [151329, 151336, 151338]
    sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens, stop_token_ids=stop_token_ids)

    inputs = tokenizer.apply_chat_template(prompts, tokenize=False, add_generation_prompt=True)
    outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)

    save_obj(outputs, output_dir)

glm4_vllm :

  • 参考自 https://www.modelscope.cn/models/zhipuai/glm-4-9b-chat

    给大家封装好了,以后有任务,直接调用函数

save_obj:

  • 把python对象,序列化保存到本地;

    在本项目中,用来保存 vllm 推理的结果;

模型推理代码
cls_vllm.py

from datasets import load_dataset

from utils import glm4_vllm
from settings import data_files, output_dirs


# basic 预测
basic_dataset = load_dataset(
    "csv",
    data_files=data_files[0],
    split="train",
)
prompts = []
for item in basic_dataset:
    prompts.append([{"role": "user", "content": item["text"]}])
glm4_vllm(prompts, output_dirs[0])


# reason 预测,添加了原因说明
reason_dataset = load_dataset(
    "csv",
    data_files=data_files[1],
    split="train",
)
prompts = []
for item in reason_dataset:
    prompts.append([{"role": "user", "content": item["text"]}])
glm4_vllm(prompts, output_dirs[1])


# nohup python cls_vllm.py > cls_vllm.log 2>&1 &

在推理过程中,我们使用了 glm4_vllm 函数进行模型推理,并将结果保存到指定路径。

output_dirs: 最终推理完成的结果输出路径;

评估

在获得模型推理结果后,我们需要对其进行评估,以衡量分类的准确性。

eval.ipynb

from settings import LABEL_NAMES
from utils import load_obj

from datasets import load_dataset
from settings import data_files, output_dirs

import os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'

ds = load_dataset("fancyzhx/ag_news")
def eval(raw_dataset, vllm_predict):
    
    right = 0 # 预测正确的数量
    multi_label = 0 # 预测多标签的数量
    
    for data, output in zip(raw_dataset, vllm_predict):
        true_label = LABEL_NAMES[data['label']]
        
        output_text = output.outputs[0].text
        pred_label = output_text.split("label")[-1]
        
        tmp_pred = []
        for label in LABEL_NAMES:
            if label in pred_label:
                tmp_pred.append(label)
        
        if len(tmp_pred) > 1:
            multi_label += 1
        
        if " ".join(tmp_pred) == true_label:
            right += 1
    
    return right, multi_label

我们分别对 basic 和 reason 预测结果进行了评估。

basic 预测结果的评估 :

dataset = load_dataset(
    'csv', 
    data_files=data_files[0], 
    split='train'
    )
output = load_obj(output_dirs[0])

eval(dataset, output)

输出结果:

(5845, 143)

加了reason 预测结果评估:

dataset = load_dataset(
    'csv', 
    data_files=data_files[1], 
    split='train'
    )
output = load_obj(output_dirs[1])

eval(dataset, output)

输出结果:

(6293, 14)

评估结果如下:

  • basic: 直接分类准确率为 77%(5845/7600),误分类为多标签的样本有 143 个。
  • reason: 在输出原因后分类准确率提高至 83%(6293/7600),多标签误分类样本减少至 14 个。

误分类多标签: 这是单分类问题,大模型应该只输出一个类别,但是它输出了多个类别;

可以发现,让大模型输出reason,不仅分类准确率提升了5%,而且在误分类多标签的数量也有所下降。
原先误分类多标签有143条数据,使用reason后,多标签误分类的数量降低到了14条。

这些结果表明,让模型输出 reason的过程,确实能够有效提升分类准确性,还能减少误分类多个标签。

  • 15
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
`glm4-9b-1m` 和 `glm4-9b-chat` 都是由 CSDN 开发的 AI 模型,它们都是基于大语言模型构建的工具,旨在提供智能问答、代码生成等服务。然而,它们之间存在一些关键的区别: ### `glm4-9b-1m` - **目的定位**:`glm4-9b-1m` 通常指代一个较为通用的语言模型,其设计目标可能是处理多种任务,包括但不限于文本理解、自然语言生成、翻译等多个领域。 ### `glm4-9b-chat` - **特定功能**:`glm4-9b-chat` 更专注于聊天交互场景。这个名称暗示了它特别优化为了提供流畅的人机对话体验,能够更好地理解上下文、保持对话连贯,并能快速响应用户的提问或指令。 ### 区别 1. **应用场景**:`glm4-9b-1m` 可能更适用于需要广泛能力支持的任务,如多模态理解和生成、文本到文本转换等多种应用;而 `glm4-9b-chat` 则专门针对实时交互需求,尤其适合于需要快速响应和高互动性的环境,比如客服机器人、即时通讯助手等。 2. **技术细节**:尽管具体的内部架构细节可能不对外公开,但可以合理推测,`glm4-9b-chat` 的训练数据集可能包含了大量的对话历史记录,以及更多关于对话管理的知识,这有助于提升模型在连续对话过程中的性能。此外,它可能还经过了特定的优化,使得在对话过程中上下文保持一致性和流畅性成为可能。 3. **性能侧重点**:考虑到 `glm4-9b-chat` 的命名,我们可以假设该模型在处理连续对话任务上有着更高的效率和质量保证。这可能意味着在对话的持续性、话题转移的平滑过渡等方面有更强的表现。 ### 相关问题: 1. 这两个模型在训练数据集的选择上有何差异? 2. 对于需要大量交互式对话的应用来说,如何评估并选择最适合的模型? 3. 如果希望开发一款虚拟助理软件,应该考虑哪些因素来决定采用 `glm4-9b-1m` 还是 `glm4-9b-chat`?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jieshenai

为了遇见更好的文章

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值