常见向量范数和矩阵范数

原创 2018年04月17日 21:01:57

1、向量范数


1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。

-∞-范数:,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。

p-范数:,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。


2、矩阵范数

1-范数:, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。

2-范数:,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。

∞-范数:,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。

F-范数:,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。

下面是解释和理解。

1-范数(列和范数)

A1=maxjmi=1|aij|‖A‖1=maxj∑i=1m|aij| 
将矩阵沿列方向取绝对值求和,然后擢选出数值最大的那个值作为1-范数。 
比如:

A =

     1     2     3
     4     5     6
     7     8     9

>> norm_1 = norm(A,1)

norm_1 =

    18
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

第一列求和结果为:|1|+|4|+|7|=12 
第二列求和结果为:|2|+|5|+|8|=15 
第三列求和结果为:|3|+|6|+|9|=18 
里面最大的就是18,因此矩阵A的列和范数为18。

2-范数(AAA∗A最大特征值开方)

A2=λ1‖A‖2=λ1 
这一部分涉及到的我不懂的概念比较多,接下来一一说明。

2-1 共轭转置矩阵

AA∗指的是A的共轭转置矩阵,也有AHAH这个写法。如果A里面全是实数,那效果就与ATAT无二;如果A里面也有复数,则是先对A取共轭(各项实部不变,虚部取相反数),然后再转置,比如:

A =

   1.0000 + 0.0000i   0.0000 - 2.0000i
   3.0000 + 0.0000i   0.0000 - 4.0000i

>> A'

ans =

   1.0000 + 0.0000i   3.0000 + 0.0000i
   0.0000 + 2.0000i   0.0000 + 4.0000i
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在matlab中A’的意思就是求共轭转置矩阵。

2-2 特征值

矩阵A的特征值被定义为:A v⃗ =λ v⃗ A v→=λ v→ 
其中v⃗ v→被称为“矩阵A的特征向量”,λ被称为“矩阵A的特征值”。 
在matlab中求解矩阵A的特征值方法如下:

A =

     1     2     3
     4     5     6
     7     8     9

>> [V,D] = eig(A)

V =

   -0.2320   -0.7858    0.4082
   -0.5253   -0.0868   -0.8165
   -0.8187    0.6123    0.4082


D =

   16.1168         0         0
         0   -1.1168         0
         0         0   -0.0000
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

矩阵V的每一列都是一个特征向量,D中对应列中的值即与该特征向量相匹配的特征值。以上例V、D第一列为例,此时特征值λ=16.1168,特征向量v⃗ =[0.2320,0.5253,0.8187]Tv→=[−0.2320,−0.5253,−0.8187]T,用matlab作验证如下:

>> A = [1,2,3;4,5,6;7,8,9]

A =

     1     2     3
     4     5     6
     7     8     9

>> v = [-0.2320,-0.5253,-0.8187]'

v =

   -0.2320
   -0.5253
   -0.8187

>> lambda = 16.1168

lambda =

   16.1168

>> A * v

ans =

   -3.7387
   -8.4667
  -13.1947

>> lambda * v

ans =

   -3.7391
   -8.4662
  -13.1948
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

可知满足A v⃗ =λ v⃗ A v→=λ v→

2-3 矩阵的2-范数

矩阵的2-范数即对矩阵AAA∗A最大特征值λ1λ1开方,如下:

>> [V,D] = eig(A'*A)

V =

   -0.4082   -0.7767    0.4797
    0.8165   -0.0757    0.5724
   -0.4082    0.6253    0.6651


D =

    0.0000         0         0
         0    1.1414         0
         0         0  283.8586

>> sqrt(283.8586)

ans =

   16.8481
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

(这里最大特征值为283.8586)

当然,matlab中也有更直接的计算矩阵2-范数的方法,如下:

>> norm_2 = norm(A,2)

norm_2 =

   16.8481
  • 1
  • 2
  • 3
  • 4
  • 5

两种方法计算出的结果是一样的。

∞-范数(行和范数)

A=maxinj=1|aij|‖A‖∞=maxi∑j=1n|aij| 
和1-范数(列和范数)类似,这里是沿行方向取绝对值求和,将最大的那个值作为矩阵的∞-范数。matlab代码如下:

>> A

A =

     1     2     3
     4     5     6
     7     8     9

>> norm(A,inf)

ans =

    24
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

第一行求和结果为:|1|+|2|+|3|=6 
第二行求和结果为:|4|+|5|+|6|=15 
第三行求和结果为:|7|+|8|+|9|=24 
里面最大的就是24,因此矩阵A的行和范数为24。

2016.9.27 
by 悠望南山



版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sjyttkl/article/details/79980745

MFC浅析(6) 对话框数据交换及验证

对话框数据交换及验证
  • FMD
  • FMD
  • 2001-06-16 13:11:00
  • 2313

向量和矩阵的范数讲义

  • 2009年11月04日 13:50
  • 606KB
  • 下载

向量与矩阵范数

范数(norm),是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。半范数反而可以为非零的矢量赋予零长度。举一个简单的例子...
  • u013007900
  • u013007900
  • 2016-02-01 09:57:12
  • 3682

向量范数与矩阵范数

1.范数(norm)的意义要更好的理解范数,就要从函数、几何与矩阵的角度去理解。 我们都知道,函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几...
  • bitcarmanlee
  • bitcarmanlee
  • 2016-07-18 20:35:26
  • 22971

向量和矩阵的各种范数比较(1范数、2范数、无穷范数等等)

向量的1范数,2范数,无穷范数,矩阵的1范数,2范数,无穷范数,L0范数,L1范数,L2范数(F范数),L21范数,核范数。。。。、。...
  • Michael__Corleone
  • Michael__Corleone
  • 2017-07-16 23:32:59
  • 16173

范数和向量范数

向量范数 定义1. 设 ,满足 1. 正定性:║x║≥0,║x║=0 iff x=0 2. 齐次性:║cx║=│c│║x║, 3. 三角不等式:║x+y║≤║x║+║y║ 则称Cn中定义了向量范数,║...
  • Daemon_neu
  • Daemon_neu
  • 2007-03-28 09:19:00
  • 5902

向量范数与矩阵范数的理解

要更好的理解范数,就要从函数、几何与矩阵的角度去理解,我尽量讲的通俗一些。我们都知道,函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函...
  • jack_20
  • jack_20
  • 2017-06-07 09:44:36
  • 756

向量的范数以及矩阵的范数

1:向量的范数是这么定义的: 也就是说只要满足这个定义的函数,所求出来的值都是可以成为这个向量的范数,那么常见的这个函数有以下几种: 2:同样矩阵的范数的定义也是如此,定义如下: ...
  • silence1214
  • silence1214
  • 2012-10-19 15:38:06
  • 2247

向量范数的等价性

向量范数的等价 对于任意两个有限维线性空间 V" role="presentation">VVV 上的范数 ‖⋅‖α,‖&#x2...
  • phoenix198425
  • phoenix198425
  • 2018-02-05 16:53:27
  • 114

矩阵论笔记(五)——向量范数与矩阵范数

范数是距离在向量和矩阵上的推广,在研究收敛性、判断矩阵非奇异等方面有广泛应用。本节包括以下内容: (1)向量范数; (2)矩阵范数; (3)从属范数; (4)谱半径; (5)矩阵的非奇异条件。...
  • withchris
  • withchris
  • 2017-03-16 11:14:57
  • 827
收藏助手
不良信息举报
您举报文章:常见向量范数和矩阵范数
举报原因:
原因补充:

(最多只允许输入30个字)