k-center问题

k-center问题寻找大小为k的点集,使所有点到集合的costmax最小。在满足三角不等式的Metric k-center问题中,通过二分查找和最小统治集策略求解。近似比分析表明算法结果不超过最优解的两倍。具体解决思路涉及最大独立集、极大独立集和最小统治集概念,以及如何利用图的子结构进行近似求解。
摘要由CSDN通过智能技术生成

k-center问题

问题描述

给定一个无向图G(V,E),定义c(v,S)为v到S中点的 c o s t cost cost值当中的最小值,并记为v到S的 c o s t cost cost值。
k-center问题就是找出一个大小为k的点集S,要求所有不在S中的点到S的 c o s t m a x cost_{max} costmax最小。

引申:如果 c o s t cost cost值满足三角不等式,那么该问题就转变成Metric k-center问题。
k-center问题和Metric k-center问题都是NP-hard。

解决思路

首先引入三个概念:最小统治集、最大独立集、极大独立集。
最小统治集:给定一个无向图G(V,E),找出一个最小的点集S,其他所有点都和点集S中的点相邻。NP困难
最大独立集:给定一个无向图G(V,E),找出一个最大的点集S,S中的每个点都互不相邻。NP困难
极大独立集:给定一个无向图G(V,E),找出一个点集S,S中的每个点都互不相邻,且不在S中的点都和点集S中的点相邻。
由定义可知:最大独立集一定是极大的,极大独立集一定是统治集。

Metric k-center问题可以这样解决:
因为 c o s t m a x cost_{max} costmax必定是某条边的长度,可以先猜一个 c o s t m a x cost_{max} costmax,即挑选一条边。
剪去代价大于 c o s t m a x cost_{max} costmax的边,剩下的图称为 G i G_i Gi
找出 G i G_i Gi的最小统治集 S d o m S_{dom} Sdom
如果 ∣ S d o m ∣ > k |S_{dom}|>k Sdom>k,说明k个点无法覆盖 G i G_i Gi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值