环形队列实现原理

环形队列是在实际编程极为有用的数据结构,它有如下特点。
   它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单。能很快知道队列是否满为空。能以很快速度的来存取数据。
   因为有简单高效的原因,甚至在硬件都实现了环形队列.
 
   环形队列广泛用于网络数据收发,和不同程序间数据交换(比如内核与应用程序大量交换数据,从硬件接收大量数据)均使用了环形队列.
 
一.环形队列实现原理
------------------------------------------------------------
 
  内存上没有环形的结构,因此环形队列实上是数组的线性空间来实现。那当数据到了尾部如何处理呢?它将转回到0位置来处理。这个的转回是通过取模操作来执行的。
   因此环列队列的是逻辑上将数组元素q[0]与q[MAXN-1]连接,形成一个存放队列的环形空间。
   为了方便读写,还要用数组下标来指明队列的读写位置。head/tail.其中head指向可以读的位置,tail指向可以写的位置。
 
 
 
 环形队列的关键是判断队列为空,还是为满。当tail追上head时,队列为满时,当head追上tail时,队列为空。但如何知道谁追上谁。还需要一些辅助的手段来判断.
 
   如何判断环形队列为空,为满有两种判断方法。
   一.是附加一个标志位tag
      当head赶上tail,队列空,则令tag=0,
      当tail赶上head,队列满,则令tag=1,
 
   二.限制tail赶上head,即队尾结点与队首结点之间至少留有一个元素的空间。
      队列空:   head==tail
      队列满:   (tail+1)% MAXN ==head
 
 
 
二.附加标志实现算法
-------------------------------------------------------------
 
  采用第一个环形队列有如下结构
typedef struct ringq{
   int head; /* 头部,出队列方向*/
   int tail; /* 尾部,入队列方向*/ 
   int tag ;
   int size ; /* 队列总尺寸 */
   int space[RINGQ_MAX]; /* 队列空间 */
  
}RINGQ;

初始化状态:  q->head = q->tail = q->tag = 0;
队列为空:( q->head == q->tail) && (q->tag == 0)
队列为满 : ((q->head == q->tail) && (q->tag == 1))
入队操作:如队列不满,则写入
     q->tail =  (q->tail + 1) % q->size ;
出队操作:如果队列不空,则从head处读出。
    下一个可读的位置在  q->head =  (q->head + 1) % q->size
 
完整代码
    头文件ringq.h
#ifndef __RINGQ_H__
#define __RINGQ_H__

#ifdef __cplusplus
extern "C" {
#endif 

#define QUEUE_MAX 20

typedef struct ringq{
   int head; /* 头部,出队列方向*/
   int tail; /* 尾部,入队列方向*/ 
   int tag ; /* 为空还是为满的标志位*/
    int size ; /* 队列总尺寸 */
   int space[QUEUE_MAX]; /* 队列空间 */
}RINGQ;

/* 
  第一种设计方法:
     当head == tail 时,tag = 0 为空,等于 = 1 为满。
*/

extern int ringq_init(RINGQ * p_queue);

extern int ringq_free(RINGQ * p_queue);


/* 加入数据到队列 */
extern int ringq_push(RINGQ * p_queue,int data);

/* 从队列取数据 */
extern int ringq_poll(RINGQ * p_queue,int *p_data);


#define ringq_is_empty(q) ( (q->head == q->tail) && (q->tag == 0))

#define ringq_is_full(q) ( (q->head == q->tail) && (q->tag == 1))

#define print_ringq(q) printf("ring head %d,tail %d,tag %d\n", q->head,q->tail,q->tag);
#ifdef __cplusplus
}
#endif 

#endif /* __RINGQ_H__ */


实现代码 ringq.c
 
#include <stdio.h>
#include "ringq.h"

int ringq_init(RINGQ * p_queue)
{
   p_queue->size = QUEUE_MAX ;
   
   p_queue->head = 0;
   p_queue->tail = 0;
   
   p_queue->tag = 0;
   
   return 0;
}

int ringq_free(RINGQ * p_queue)
{
  return 0;
}


int ringq_push(RINGQ * p_queue,int data)
{
  print_ringq(p_queue);
  
  if(ringq_is_full(p_queue))
   {
     
     printf("ringq is full\n");
     return -1;
   }
      
   p_queue->space[p_queue->tail] = data;
   
   p_queue->tail = (p_queue->tail + 1) % p_queue->size ;
   
   /* 这个时候一定队列满了*/
   if(p_queue->tail == p_queue->head)
    {
       p_queue->tag = 1;
    }

    return p_queue->tag ;  
}

int ringq_poll(RINGQ * p_queue,int * p_data)
{
   print_ringq(p_queue);
  if(ringq_is_empty(p_queue))
   {
      
      printf("ringq is empty\n");
     return -1;
   }
   
   *p_data = p_queue->space[p_queue->head];
   
   p_queue->head = (p_queue->head + 1) % p_queue->size ;
   
    /* 这个时候一定队列空了*/
   if(p_queue->tail == p_queue->head)
    {
       p_queue->tag = 0;
    }    
    return p_queue->tag ;
}


测试代码
/* 测试第一种环形队列*/
void test5()
{
  RINGQ rq, * p_queue;
  int i,data;
  
  p_queue = &rq;
  
  ringq_init(p_queue);
  
  for(i=0; i < QUEUE_MAX +2 ; i++)
  {
   
   ringq_push(p_queue,i+1); 
  } 
    
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  ringq_free(p_queue);
}

/* 测试第一种环形队列,更加复杂的情况*/
void test6()
{
  RINGQ rq, * p_queue;
  int i,data;
  
  p_queue = &rq;
  
  ringq_init(p_queue);
  
  
   ringq_push(p_queue,1); 
   
   ringq_push(p_queue,2); 
  
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
    
  ringq_push(p_queue,3); 
  
  ringq_push(p_queue,4); 
  
  ringq_push(p_queue,5); 
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
       
   ringq_push(p_queue,6); 
     
   if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
     
     if(ringq_poll(p_queue,&data)>=0)
     PRINT_INT(data);
  
  ringq_free(p_queue);
}


 
三.预留空间环境队列
 
 -------------------------------------------------------------------
 
不采用tag,只留一个空间
  
 
初始化状态:  q->head = q->tail = q->tag = 0;
队列为空:( q->head == q->tail)
队列为满 : (((q->tail+1)%q->size) == q->head )
入队操作:如队列不满,则写入
     q->tail =  (q->tail + 1) % q->size ;
出队操作:如果队列不空,则从head处读出。
    下一个可读的位置在  q->head =  (q->head + 1) % q->size
 
头文件
  ringq.h
   
#ifndef __RINGQ_H__
#define __RINGQ_H__

#ifdef __cplusplus
extern "C" {
#endif 

#define RINGQ_MAX 20

typedef struct ringq{
   int head; /* 头部,出队列方向*/
   int tail; /* 尾部,入队列方向*/ 
   int size ; /* 队列总尺寸 */
   int space[RINGQ_MAX]; /* 队列空间 */
}RINGQ;

/*
  取消tag .限制读与写之间至少要留一个空间
  队列空 head == tail .
  队列满是 (tail+1)%MAX == head  
  初始化是head = tail = 0;   
*/

extern int ringq_init(RINGQ * p_ringq);

extern int ringq_free(RINGQ * p_ringq);

extern int ringq_push(RINGQ * p_ringq,int data);

extern int ringq_poll(RINGQ * p_ringq,int * p_data);

#define ringq_is_empty(q) (q->head == q->tail)

#define ringq_is_full(q) (((q->tail+1)%q->size) == q->head )

#define print_ringq2(q,d) printf("ring head %d,tail %d,data %d\n", q->head,q->tail,d);

#ifdef __cplusplus
}
#endif 

#endif /* __QUEUE_H__ */

 

实现代码ringq.c

#include <stdio.h>

#include "ringq.h"

int ringq_init(RINGQ * p_ringq)
{
  p_ringq->size = RINGQ_MAX;
  
  p_ringq->head = 0;
  p_ringq->tail = 0;
  
  return p_ringq->size;
}

int ringq_free(RINGQ * p_ringq)
{
  return 0;
}

/* 往队列加入数据 */
int ringq_push(RINGQ * p_ringq,int data)
{
   print_ringq(p_ringq,data);
   
   if(ringq_is_full(p_ringq))
     {
         printf("ringq is full,data %d\n",data);
           return -1;
     }
         
   p_ringq->space[p_ringq->tail] = data;
   
   p_ringq->tail = (p_ringq->tail + 1) % p_ringq->size ;   
    
    return p_ringq->tail ;
}


int ringq_poll(RINGQ * p_ringq,int * p_data)
{
   print_ringq(p_ringq,-1);
  if(ringq_is_empty(p_ringq))
   {
     printf("ringq is empty\n");
     return -1;
   }
   
   *p_data = p_ringq->space[p_ringq->head];
   
   p_ringq->head = (p_ringq->head + 1) % p_ringq->size ;
   
   return p_ringq->head;
}

作者: Andrew Huang bluedrum@163.com

已标记关键词 清除标记
1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页