机器学习5 多维正态分布(高斯分布)

概率密度

p(x)=1(2π)n2|β|12exp(12(xα)Tβ1(xα)) ~ N(α,β)
其中 β=E[(xα)(xα)T]
当n=1时
β=σ2,α=μ
p(x)=12πσexp((xμ)22σ2)
当n=1时

β=(σ12σ1σ2rσ1σ2rσ22)

α=(a,b)


β1=1σ12σ22(1r2)(σ22σ1σ2rσ1σ2rσ12)
p(x,y)=12πσ1σ21r2exp(12(1r2)[(xa)2σ122r(xa)(yb)σ1σ2+(yb)2σ22])

二维边缘分布率

p(x,y)dy=
12πσ1σ21r2exp(12(1r2)[(xa)2σ122r(xa)(yb)σ1σ2+(yb)2σ22])dy
=12πσ112πσ21r2exp12(1r2)(ybσ2r(xa)σ1)2σ22+(1r2)(xa)2σ12dy
=12πσ1exp((xa)22σ12)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值