opencv学习笔记(五)——Sobel算子

本文详细介绍了图像处理中的关键概念——梯度、边缘和差分,阐述了它们在图像分析中的作用。通过OpenCV的Sobel函数,展示了如何在C++中实现图像的梯度检测,以提取图像边缘信息。通过实例代码,读者可以理解并应用到实际的图像处理任务中。
摘要由CSDN通过智能技术生成

一 . 概念

1 . 梯度

把图片想象成连续函数,因为边缘部分的像素值是与旁边像素明显有区别的,所以对图片局部求极值,就可以得到整幅图片的边缘信息了。不过图片是二维的离散函数,导数就变成了差分,这个差分就称为图像的梯度。

2 . 边缘

灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

3 . 差分

图像差分,就是把两幅图像的对应像素值相减,以削弱图像的相似部分,突出显示图像的变化部分。例如,差分图像往往能够检测出运动目标的轮廓,能够提取出闪烁导管的轨迹等等。

二 . 原理

在这里插入图片描述
在这里插入图片描述

三 . API

void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )

src : 输入图像.
dst : 输出图像.
int ddepth : 输出图像的深度
xorder : x 方向上的差分阶数
yorder : y 方向上的差分阶数
ksize : 扩展 Sobel 核的大小,必须是 1, 3, 5 或 7。 除了尺寸为 1, 其它情况下, aperture_size ×aperture_size 可分离内核将用来计算差分。对 aperture_size=1的情况, 使用 3x1 或 1x3 内核 (不进行高斯平滑操作)。这里有一个特殊变量 CV_SCHARR (=-1),对应 3x3 Scharr 滤波器,可以给出比 3x3 Sobel 滤波更精确的结果。
double scale=1 : 图像放大的倍数
double delta=0 : 图像像素增加的值
int borderType=BORDER_DEFAULT : 图像边界的处理方式

四 . 代码

#include<iostream>
#include<opencv2/opencv.hpp>

using namespace cv;
using namespace std;


int main()
{
	Mat src, dst;
	src = imread("XXXXXX");
	/*Mat kx = (Mat_<float>(1, 3) << 0,-1,0);
	Mat ky = (Mat_<float>(1, 3) << -1,0, -1);
	sepFilter2D(src, dst, src.depth(),kx,ky,Point(-1,-1),0,BORDER_DEFAULT );*/
	Sobel(src, dst, src.depth(), 1, 1, 3, 1, 0);
	imshow("origin", src);
	imshow("shiyan", dst);
	waitKey(0);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WFForstar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值