对比pytorch的优化器实现及使用方法MindSporeAI

对比pytorch的优化器实现及使用方法 

概述 

基本用法 

基类入参设置及支持的方法 

基类入参 

基类支持的方法 

自定义优化器 

API映射 

对比pytorch的优化器实现及使用方法 

概述 

优化器在模型训练过程中,用于计算和更新网络参数,本文对比MindSpore和pytorch的在这一部分的实现方式差异,分别从基本用法,基类入参设置及支持的方法,自定义优化器,API映射四部分展开。 

 

基本用法 

MindSpore:MindSpore除了封装了Model高阶API来方便用户定义和训练网络,在定义Model时指定优化器;也提供了TrainOneStepCell接口,通过传入优化器和一个WithLossCell的实例,自定义训练网络;在pynative模式下,也可以实现单步执行优化器。 

 

代码样例如下,首先定义网络、损失函数和优化器,再分别大致介绍优化器的三种使用场景。 

from mindspore import context, Tensor, ParameterTuple
from mindspore import nn, Model, ops

net = Net()
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = nn.SGD(params=net.trainable_params(), learning_rate=0.01)
复制
# 使用Model接口
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"accuracy"})
复制
# 使用TrainOneStepCell自定义网络
loss_net = nn.WithLossCell(net, loss) # 包含损失函数的Cell
train_net = nn.TrainOneStepCell(loss_net, optim)
for i in range(epochs):
  for image, label in train_dataset:
    train_net.set_train() 
    res =train_net(image, label) # 执行网络的单步训练
复制
# pynative模式下,单步实现GradOperation求梯度,并执行优化器
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")

class GradWrap(nn.Cell):
    """ GradWrap definition """
    def __init__(self, network):
        super(GradWrap, self).__init__(auto_prefix=False)
        self.network = network
        self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))

    def construct(self, x, label):
        weights = self.weights
        return ops.GradOperation(get_by_list=True)(self.network, weights)(x, label)
        
loss_net = nn.WithLossCell(net, loss)
train_network = GradWrap(loss_net)

output = net(image)
loss_output = loss(output, label)
grads = train_network(image, label)
success = optimizer(grads)
复制

pytorch:torch为Tensor建立了grad属性和backward方法,tensor.grad是通过tensor.backward方法(本质是torch.autograd.backward)计算的,且在计算中进行梯度值累加,因此一般在调用tensor.backward方法前,需要手动将grad属性清零。 

 

cke_37946.png

在下面的代码中,初始化了一个优化器实例,每次循环调用zero_grad清零梯度,backward更新梯度,step更新网络参数,返回损失。 

optimizer = optim.SGD(net.parameters(), lr=0.01)
loss = torch.nn.MSELoss()

for epoch in range(epochs):
  for image, label in train_dataset:
    optimizer.zero_grad()
    output = net(image)
    loss = loss(output, label)
    loss.backward()
    optimizer.step()
复制

基类入参设置及支持的方法 

基类入参 

MindSpore 

optimizer(learning_rate, parameters, weight_decay=0.0, loss_scale=1.0)
复制

pytorch: 

optimizer(params, defaults)
复制

1. 网络中需要被训练的参数  

MindSpore和pytorch的优化器都需要传入网络中需要被训练的参数,且参数的设置同时都支持默认接口和用户自定义设置两种方式。 

 

默认接口: 

MindSpore的parameter包含了网络中所有的参数,通过require_grad属性来区分是否需要训练和优化。trainable_params方法返回一个filter的list,筛选了网络中require_grad属性为True的parameter。 

from mindspore import nn
optim = nn.SGD(net.trainable_params())
复制

pytorch的state包含了网络中所有的参数,其中需要被优化的是parameter,不需要优化的是buffer(例如:BatchNorm中的running_mean和running_var )。parameters方法返回需要被优化参数的generator。 

from torch import nn, optim
optim = optim.SGD(params=model.parameters(), lr=0.01)
复制

用户自定义: 

MindSpore和pytorch都支持用户自定义传入需要优化的参数,例如,对非卷积参数进行训练和优化。代码样例如下: 

from mindspore import nn

net = Net()
all_params = net.get_parameters()
non_conv_params = list(filter(lambda x: "conv" not in x.name, all_params))
optim = nn.SGD(params=non_conv_params)
复制
from torch import optim

net = Net()
all_params = net.named_parameters()
target_params = []
for name, params in all_params:
    if "conv" in name:
        target_params.append(params)
optim = optim.SGD(params=target_params, lr=0.01)
复制

2. 学习率 

使用固定学习率时,用法相同,传入固定值即可;使用动态学习率时,MindSpore和pytorch都支持动态学习率调整策略,实现方式略有不同。 

MindSpore:动态学习率有两种实现方式,预生成列表mindspore.nn.dynamic_lr和计算图格式mindspore.nn.learning_rate_schedule,且动态学习率实例作为优化器的参数输入。 

 

pytorch:优化器作为lr_scheduler的输入,调用step方法对学习率进行更新。 

milestone = [2, 5, 10]
learning_rates = [0.1, 0.05, 0.01]
piecewise_lr = piecewise_constant_lr(milestone, learning_rates)
print(piecewise_lr)
复制
from troch import optim

model = Net()
optimizer = optim.SGD(model, 0.1)
scheduler = optim.ExponentialLR(optimizer, gamma=0.9)

for epoch in range(epochs):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()
复制

调整策略映射表 

 

cke_84650.png

3. weight decay 

用法相同。一般情况下,weight_decay取值范围为[0, 1),实现对(BatchNorm以外的)参数使用权重衰减的策略,以避免模型过拟合问题;weight_decay的默认值为0.0,此时不使用权重衰减策略。 

 

4. 参数分组 

MindSpore和pytorch都支持参数分组且使用方法相似,在使用时都是给优化器传入一个字典的列表,每个字典对应一个参数组,其中key为参数名,value为对应的设置值。不同点是,MindSpore只支持对“lr”,“weight_decay”,“grad_centralizaiton”实现分组,pytoch支持对所有参数进行分组。此外,pytorch还支持add_param_group方法,对参数组进行添加和管理。 

 

同时,在分组获取学习率时,pytorch通过 

注:MindSpore和pytorch各自有部分优化器不支持参数分组,请参考具体优化器的实现。 

 

MindSpore参数分组用法请参考编程指南;pytorch参数分组用法参考下述样例: 

from torch import optim

net = Net()
all_params = net.parameters()
weight_params = []
quant_params = []
# 根据自己的筛选规则 将所有网络参数进行分组
for pname, p in model.named_parameters():
    if any([pname.endswith(k) for k in ['cw', 'dw', 'cx', 'dx', 'lamb']]):
        quant_params += [p]
    elif ('conv' or 'fc' in pname and 'weight' in pname):
        weight_params += [p]
# 取回分组参数的id
params_id = list(map(id, weight_params)) + list(map(id, quant_params))
# 取回剩余分特殊处置参数的id
other_params = list(filter(lambda p: id(p) not in params_id, all_params))
# 构建不同学习参数的优化器
optimizer = torch.optim.SGD([
        {'params': other_params},
        {'params': quant_params, 'lr': 0.02},
        {'params': weight_params, 'weight_decay': 0.5}],
        lr=0.01, momentum=0.9,)
复制

5.混合精度 

Mindspore中的混合精度场景下,如果使用FixedLossScaleManager进行溢出检测,且drop_overflow_update为False时,优化器需设置loss_scale的值,且loss_scale值与FixedLossScaleManager的相同,详细使用方法可以参考优化器的混合精度配置。torch的混合精度设置不作为优化器入参。 

 

基类支持的方法 

1. 获取LR 

torch.optim.lr_scheduler.get_last_lr():根据参数组返回对应的最新学习率数值的列表。 

mindspore中没有直接可以按照组别获取对应学习率的功能,但提供了以下方法辅助使用: 

mindspore.nn.optimizer.get_lr():获取当前step的学习率,可以在自定义优化器时,在construct方法中使用。 

mindspore.nn.optimizer.get_lr_parameter(params):获取指定参数组的参数学习率列表,如果是固定学习率,返回一个标量Parameter的列表;如果是计算图格式的动态学习率,返回一个Cell的列表;如果是列表格式的动态学习率,返回shape为(n,)的Parameter的列表(其中n是动态学习率列表的长度)。 

 

2. 获取优化器的状态 

torch.optimizer.param_groups:获取优化器相关配置参数的状态,返回数据格式为字典的列表,key为参数名,value为参数值。以SGD为例,字典的key为key为’params’, ‘lr’, ‘momentum’, ‘dampening’, ‘weight_decay’, 'nesterov’等。 

torch.optimizer.state_dict():获取optimizer的状态,返回一个key为“state”,“param_groups”,value为对应数值的字典。 

MindSpore暂无对应功能。 

 

自定义优化器 

Mindspore和pytorch都支持用户基于python基本语法及相关算子自定义优化器。在torch中,通过重写__init__和step方法,用户可以根据需求自定义优化器,具体用法可以参考WRITING YOUR OWN OPTIMIZERS IN PYTORCH。MindSpore也支持类似用法,以Momentum为例: 

from mindspore import Parameter, ops, nn

class MomentumOpt(nn.Optimizer):
    def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False):
        super(MomentumOpt, self).__init__(learning_rate, params, weight_decay, loss_scale)
        self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
        self.moments = self.parameters.clone(prefix="moments", init="zeros")
        self.opt = ops.ApplyMomentum(use_nesterov=use_nesterov)
        self.assign = ops.Assign()
    def construct(self, gradients):
        params = self.parameters
        moments = self.moments
        success = None
        for param, mom, grad in zip(params, moments, gradients):
            # 小算子表达
            # update = self.momentum * param + mom + self.learning_rate * grad
            # success = self.assign(param, update)
            # 大算子表达
            success = self.opt(param, mom, self.learning_rate, grad, self.momentum)
        return success
复制

API映射 

Mindspore和pytorch的API对应关系和差异可以参考API映射,其余暂时没有对应关系的接口目前情况如下: 

# torch
torch.optim.ASGD
torch.optim.LBFGS
复制
# mindspore
mindspore.nn.ProximalAadagrad
mindspore.nn.AdamOffload
mindspore.nn.FTRL
mindspore.nn.Lamb
mindspore.nn.thor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值