pytorch 优化器

57 篇文章 5 订阅 ¥39.90 ¥99.00
本文详细介绍了PyTorch中的优化器,包括优化器的作用、常见属性和方法如zero_grad()、step()、add_param_group()等。讨论了学习率和动量在优化过程中的影响,并探讨了如何通过调整学习率和动量来优化模型训练。同时提到了常见的优化器Adam,并给出了参考链接。
摘要由CSDN通过智能技术生成

深度学习五个步骤:数据 ——> 模型 ——> 损失函数 ——> 优化器 ——> 迭代训练,通过前向传播,得到模型的输出和真实标签之间的差异,也就是损失函数,有了损失函数之后,模型反向传播得到参数的梯度,接下来就是优化器根据这个梯度去更新参数。

优化器

pytorch的优化器:更新模型参数。

在更新参数时一般使用梯度下降的方式去更新。梯度下降常见的基本概念

  1. 导数:函数在指定坐标轴上的变化率;
  2. 方向导数:指定方向上的变化率;
  3. 梯度:一个向量,方向为方向导数取得最大值的方向。

所以梯度是一个向量,方向是导数取得最大值的方向,也就是增长最快的方向,而梯度下降是沿着梯度的负方向去变化。

优化器的属性和方法

class Optimizer:
    defaults: dict
    state: dict
    param_groups: List[dict]

    def __init__(self, params: _params_t, default: dict) -> None: ...
    def __setstate__(self, state: dict) -> None: ...
    def state_dict(self) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值