bzoj3884 上帝与集合的正确用法(扩展欧拉定理)

题目链接

分析:
谁是欧拉?什么是扩展欧拉定理?

简单说一下:

abab mod ϕ(p)                               (mod p)(gcd(a,p)=1)  (1) a b ≡ a b   m o d   ϕ ( p )                                                               ( m o d   p ) ( g c d ( a , p ) = 1 )     ( 1 )

abab                          (mod p)(gcd(a,p)!=1,b<ϕ(p))  (2) a b ≡ a b                                                     ( m o d   p ) ( g c d ( a , p ) ! = 1 , b < ϕ ( p ) )     ( 2 )

abab mod ϕ(p)+ϕ(p)   (mod p)(gcd(a,p)!=1,b>=ϕ(p))  (3) a b ≡ a b   m o d   ϕ ( p ) + ϕ ( p )       ( m o d   p ) ( g c d ( a , p ) ! = 1 , b >= ϕ ( p ) )     ( 3 )

如果给出的模数是奇数(一定和2互质),我们就可以用 (1) ( 1 )
把2的指数% ϕ(p) ϕ ( p ) ,而对于指数的指数% ϕ(ϕ(p)) ϕ ( ϕ ( p ) ) ,以此类推

2222... (mod p)=2(222...)mod ϕ(p) (mod p)=2(2(22...) mod ϕ(ϕ(p)))mod ϕ(p) (mod p)=... 2 2 2 2 . . .   ( m o d   p ) = 2 ( 2 2 2 . . . ) m o d   ϕ ( p )   ( m o d   p ) = 2 ( 2 ( 2 2 . . . )   m o d   ϕ ( ϕ ( p ) ) ) m o d   ϕ ( p )   ( m o d   p ) = . . .

然而,由于 ϕ(ϕ(p))<p2 ϕ ( ϕ ( p ) ) < p 2 ,所以 ϕ(p) ϕ ( p ) O(logn) O ( l o g n ) 次嵌套后就会变成1,等到 phi(p)=1 p h i ( p ) = 1 ,再往上就没有必要了(mod 1=0)

ϕ(ϕ(p))<p2 ϕ ( ϕ ( p ) ) < p 2
如果 p p 为奇数,那么ϕ(p)最坏情况等于 p1 p − 1 (质数),那么 phi(p) p h i ( p ) 一定是一个偶数
偶数的 ϕ ϕ 至多是12(偶数不会与偶数互质),因此 ϕ(ϕ(p))<p2 ϕ ( ϕ ( p ) ) < p 2
如果 p p 为偶数,偶数的ϕ至多是 12 1 2 ,因此 ϕ(ϕ(p))<p2 ϕ ( ϕ ( p ) ) < p 2

然而如果p和2不互质,我们就不能把指数简单的 %ϕ(p) % ϕ ( p )
由欧拉定理的 (2)(3) ( 2 ) ( 3 ) 可以找到解决方法

然而欧拉定理只影响取模方式,不影响模数
重新定义一个mod运算即可

#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

const int N=100010;
ll p,mod[N];
int cnt=0;

ll phi(ll a) {
    ll b=a;
    for (ll i=2;i*i<=a;i++) 
        if (a%i==0) {
            b=b/i*(i-1);
            while (a%i==0) a/=i;
        }
    if (a!=1) b=b/a*(a-1);
    return b;
}

ll MOD(ll a,ll b) {
    if (a<b) return a;    //小于模数 
    else return a%b+b;
}

ll KSM(ll a,ll b,ll p) {
    ll t=1;
    while (b) {
        if (b&1) t=MOD(t*a,p);
        b>>=1;
        a=MOD(a*a,p);
    }
    return t;
}

ll solve(int dep) {
    if (dep>=cnt) return 1;
    ll pp=solve(dep+1);
    ll ans=KSM(2,pp,mod[dep]);
    return ans; 
}

int main()
{
    int T;
    scanf("%d",&T);
    while (T--) {
        scanf("%lld",&p);
        cnt=0;
        mod[++cnt]=p;
        while (mod[cnt]!=1) mod[++cnt]=phi(mod[cnt-1]);   //嵌套phi
        printf("%lld\n",solve(1)%p); 
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值