数据挖掘过程中的问题集合

问题1:以bid(客户一次消费行为id)进行建模,导致同一个客户对应的label不同

解决:以cid(客户id,人维度)进行建模,对label归一化,统一处理为0或者1,相当于加权操作

问题2:训练集和测试集中有重复数据,可能造成过拟合

解决:实际训练时,对重复数据进行处理,如:剔除训练集的重复数据,但在测试集中保留。
如果是参加算法比赛,可以将重复数据找出后做成规则,增加预测准确度

问题3:lgb.train和LGBMClassifier.fit有什么差别?

import lightgbm as lgb
from lightgbm import LGBMClassifier

lgb使用的是lightgbm原生的booster,需要用lgb.Dataset将X和Y集合化
LGBMClassifier是将lightgbm封装为sklearn的API格式,可以使用sklearn的API,包括sklearn2pmml,方便部署

问题4:模型部署的方法有哪些?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值