[BZOJ1651] [Usaco2006 Feb]Stall Reservations 专用牛棚

传送门

http://www.lydsy.com/JudgeOnline/problem.php?id=1651

题目大意

给出奶牛运动的时间段,询问同一时间最多的奶牛数

题解

线段树或差分序列

线段树
var
 x:array[0..3000000,1..4]of longint;
 i,j,k:longint;
 n,a,b,m:longint;
function max(a,b:longint):longint;
begin
 if a>b then exit(a) else exit(b);
end;

procedure build(a,l,r:longint);
var mid:longint;
begin
 x[a,1]:=l; x[a,2]:=r;
 if l=r then exit;
 mid:=(l+r)>>1;
 build(a*2,l,mid);
 build(a*2+1,mid+1,r);
end;

procedure pushdown(a:longint);
begin
 if x[a,1]=x[a,2] then begin x[a,4]:=0; exit; end;
 inc(x[a*2,3],x[a,4]); inc(x[a*2,4],x[a,4]);
 inc(x[a*2+1,3],x[a,4]); inc(x[a*2+1,4],x[a,4]);
 x[a,4]:=0;
end;

procedure update(a,l,r:longint);
var mid:longint;
begin
 if x[a,4]<>0 then pushdown(a);
 if (l=x[a,1])and(r=x[a,2]) then begin inc(x[a,3]); inc(x[a,4]); exit; end;
 mid:=(x[a,1]+x[a,2])>>1;
 if r<=mid then update(a*2,l,r) else
 if l>mid then update(a*2+1,l,r)
 else begin update(a*2,l,mid); update(a*2+1,mid+1,r); end;
 x[a,3]:=max(x[a*2,3],x[a*2+1,3]);
end;

begin
 readln(n);
 build(1,1,1000000);
 for i:=1 to n do
  begin
   readln(a,b);
   update(1,a,b);
  end;
 writeln(x[1,3]);
end.
差分序列

学习了一下~
差分是相邻两个数的差值,序列是所有的差值排成序列
我们考虑区间加上一个相同的数a,[L,R],那么对于差分序列x[l]+a,x[r+1]-a
最后用前缀和判断最大值即可

var
 sum,x:array[0..1000005]of longint;
 i,j,k:longint;
 n,a,b,ans:longint;
begin
 fillchar(x,sizeof(x),0);
 fillchar(sum,sizeof(sum),0);
 readln(n);
 for i:=1 to n do
  begin
   readln(a,b);
   inc(x[a]); dec(x[b+1]);
  end;
 ans:=0;
 for i:=1 to 1000005 do
  begin
   sum[i]:=sum[i-1]+x[i];
   if ans<sum[i] then ans:=sum[i];
  end;
 writeln(ans);
end.
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值