基于GPT搭建私有知识库聊天机器人(三)向量数据训练

本文详细阐述了使用GPT搭建私有知识库聊天机器人的数据训练流程,包括PDF文档准备、上传、训练、内容切割及利用向量数据库Milvus进行存储。通过代码示例展示了文件上传、内容加载和存储的具体实现,为构建聊天机器人奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前文链接:

基于GPT搭建私有知识库聊天机器人(一)实现原理

基于GPT搭建私有知识库聊天机器人(二)环境安装

基于GPT搭建私有知识库聊天机器人(四)问答实现


在前面的文章中,我们介绍了实现原理和基本环境安装。本文将重点介绍数据训练的流程,以及如何加载、切割、训练数据,并使用向量数据库Milvus进行数据存储。

1. 数据训练依赖于向量数据库

在本文中,我们使用了Milvus作为向量数据库。读者可以参考之前的文章《基于GPT搭建私有知识库聊天机器人(二)环境安装》来准备其他基础环境。

2. 数据训练流程

数据训练的流程包括准备PDF文档、上传至系统文件目录、开始训练、加载文件内容、内容切割和存储至向量数据库。下面是整个流程的流程图:

准备PDF文档
上传至系统文件目录
开始训练
加载文件内容
内容切割
存储至向量数据库

3. 代码展示

3.1 上传文件至系统文件目录

@app.route('/upload', methods=['GET', 'POST'])
def index():
    if request.method == 'POST':
        # 获取文本内容
        text = request.form.get('name')
        # 获取文件内容
        file = request.files.get('file')
        if file:
            # 保存文件到服务器
            filename = file.filename
            file.save(os.path.join(KNOWLEDGE_FOLDER, text, filename))
            file_path = os.path.join(KNOWLEDGE_FOLDER, text, filename)
        else:
            file_path = None

        return jsonify({'message': '上传成功', 'fileServicePath': file_path})

    return render_template('index.html')

3.2 加载文件内容

# 映射文件加载
LOADER_MAPPING = {
    ".csv": (CSVLoader, {}),
    ".docx": (Docx2txtLoader, {}),
    ".doc": (UnstructuredWordDocumentLoader, {}),
    ".docx": (UnstructuredWordDocumentLoader, {}),
    ".enex": (EverNoteLoader, {}),
    ".eml": (MyElmLoader, {}),
    ".epub": (UnstructuredEPubLoader, {}),
    ".html": (UnstructuredHTMLLoader, {}),
    ".md": (UnstructuredMarkdownLoader, {}),
    ".odt": (UnstructuredODTLoader, {}),
    ".pdf": (PDFMinerLoader, {}),
    ".ppt": (UnstructuredPowerPointLoader, {}),
    ".pptx": (UnstructuredPowerPointLoader, {}),
    ".txt": (TextLoader, {"encoding": "utf8"}),
}

def load_single_document(file_path: str) -> List[Document]:
    ext = "." + file_path.rsplit(".", 1)[-1]
    if ext in LOADER_MAPPING:
        loader_class, loader_args = LOADER_MAPPING[ext]
        loader = loader_class(file_path, **loader_args)
        return loader.load()

    raise ValueError(f"文件不存在 '{ext}'")

# 加载文件
def load_documents_knowledge(source_dir: str, secondary_directories: str) -> List[Document]:
    """
    Loads all documents from the source documents directory, ignoring specified files
    """
    all_files = []
    for ext in LOADER_MAPPING:
        all_files.extend(

            glob.glob(os.path.join(source_dir, secondary_directories, f"**/*{ext}"), recursive=True)
        )
    filtered_files = [file_path for file_path in all_files if file_path]

    with Pool(processes=os.cpu_count()) as pool:
        results = []
        with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
            for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
                results.extend(docs)
                pbar.update()

    return results

3.3 内容切割

text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)

3.4 存储至向量数据库

Milvus.from_documents(
        texts,
        collection_name=collection_name,
        embedding=embeddings,
        connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
    )

3.5 全部代码

#!/usr/bin/env python3
import glob
import os
import shutil
from multiprocessing import Pool
from typing import List

from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.document_loaders import (
    CSVLoader,
    EverNoteLoader,
    PDFMinerLoader,
    TextLoader,
    UnstructuredEmailLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader, )
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Milvus
from tqdm import tqdm

load_dotenv(".env")

MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
KNOWLEDGE_FOLDER = os.environ.get('KNOWLEDGE_FOLDER')
KNOWLEDGE_FOLDER_BK = os.environ.get('KNOWLEDGE_FOLDER_BK')
chunk_size = 500
chunk_overlap = 50


# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
    """在默认值不起作用时回退到文本纯"""

    def load(self) -> List[Document]:
        """EMl没有 html 使用text/plain"""
        try:
            try:
                doc = UnstructuredEmailLoader.load(self)
            except ValueError as e:
                if 'text/html content not found in email' in str(e):
                    # Try plain text
                    self.unstructured_kwargs["content_source"] = "text/plain"
                    doc = UnstructuredEmailLoader.load(self)
                else:
                    raise
        except Exception as e:
            # Add file_path to exception message
            raise type(e)(f"{self.file_path}: {e}") from e

        return doc


# 映射文件加载
LOADER_MAPPING = {
    ".csv": (CSVLoader, {}),
    # ".docx": (Docx2txtLoader, {}),
    ".doc": (UnstructuredWordDocumentLoader, {}),
    ".docx": (UnstructuredWordDocumentLoader, {}),
    ".enex": (EverNoteLoader, {}),
    ".eml": (MyElmLoader, {}),
    ".epub": (UnstructuredEPubLoader, {}),
    ".html": (UnstructuredHTMLLoader, {}),
    ".md": (UnstructuredMarkdownLoader, {}),
    ".odt": (UnstructuredODTLoader, {}),
    ".pdf": (PDFMinerLoader, {}),
    ".ppt": (UnstructuredPowerPointLoader, {}),
    ".pptx": (UnstructuredPowerPointLoader, {}),
    ".txt": (TextLoader, {"encoding": "utf8"}),
}


def load_single_document(file_path: str) -> List[Document]:
    ext = "." + file_path.rsplit(".", 1)[-1]
    if ext in LOADER_MAPPING:
        loader_class, loader_args = LOADER_MAPPING[ext]
        loader = loader_class(file_path, **loader_args)
        return loader.load()

    raise ValueError(f"文件不存在 '{ext}'")


def load_documents_knowledge(source_dir: str, secondary_directories: str) -> List[Document]:
    """
    Loads all documents from the source documents directory, ignoring specified files
    """
    all_files = []
    for ext in LOADER_MAPPING:
        all_files.extend(

            glob.glob(os.path.join(source_dir, secondary_directories, f"**/*{ext}"), recursive=True)
        )
    filtered_files = [file_path for file_path in all_files if file_path]

    with Pool(processes=os.cpu_count()) as pool:
        results = []
        with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
            for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
                results.extend(docs)
                pbar.update()

    return results


def process_documents_knowledge(secondary_directories: str) -> List[Document]:
    """
    加载文档并拆分为块
    """
    print(f"加载文件目录: {KNOWLEDGE_FOLDER}")
    documents = load_documents_knowledge(KNOWLEDGE_FOLDER, secondary_directories)
    if not documents:
        print("没有文件需要加载")
        exit(0)
    print(f"加载 {len(documents)} 文件从 {KNOWLEDGE_FOLDER}")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    texts = text_splitter.split_documents(documents)
    print(f"切割 {len(texts)} 文本块 (最大. {chunk_size} tokens 令牌)")
    return texts


def main_knowledge(collection_name: str):
    # Create embeddings
    embeddings = OpenAIEmbeddings()

    texts = process_documents_knowledge(collection_name)

    Milvus.from_documents(
        texts,
        collection_name=collection_name,
        embedding=embeddings,
        connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
    )

4. 总结

在本文中,我们详细介绍了基于GPT搭建私有知识库聊天机器人的数据训练过程,包括数据训练的依赖、流程和代码展示。数据训练是搭建聊天机器人的重要步骤,希望本文能对读者有所帮助。在下一篇文章中,我们将介绍如何使用训练好的模型进行聊天机器人的测试和使用。

### 聊天机器人知识库的构建与管理 #### 1. 使用 RAG 技术结合 MongoDB 和 LangChain 构建知识库 Retrieval-Augmented Generation (RAG) 是一种融合检索和生成的技术,能够显著提升聊天机器人的性能。通过将 MongoDB 数据库作为存储层,LangChain 框架用于连接数据源和大语言模型,可以实现高效的知识管理和对话生成[^1]。 具体而言,MongoDB 提供灵活的数据结构支持,适合存储非结构化或半结构化的文档型数据;而 LangChain 则提供了工具链,帮助开发者轻松集成各种外部资源到大模型中。这种方法不仅提高了回复的相关性和准确性,还允许动态更新知识库内容以适应不断变化的需求。 #### 2. 基于 UDP 的简单知识库管理系统 另一种方式是采用更轻量级的设计方案——基于 User Datagram Protocol (UDP) 协议传输消息并维护本地 `.txt` 文件形式的小规模知识库。这种方式主要适用于小型项目或者教学演示场景,在此过程中会运用到 Java 编程语言中的多个核心概念和技术模块: - **图形用户界面(GUI)**: 可视化操作环境由 Swing 组件构成,并配合 GUI Form 完成布局设置; - **客户端/服务器(C/S)模式**: 实现网络间的信息交换依赖于多线程机制下的 UDP 高效短报文传递特性; - **持久化存储**: 对话历史记录以及预定义问答对保存至磁盘上的纯文本文件里,便于后续访问调用; - **时间戳处理**: 时间显示功能借助 `Data` 类及其子类完成标准化表达转换过程[^2]。 尽管如此简单的架构可能无法满足复杂业务逻辑的要求,但对于初学者来说是一个很好的起点去理解整个流程是如何运作起来的。 #### 3. DeepSeek + Dify 方案快速部署个性化服务端应用 对于希望更快捷地搭建起具备一定智能化水平的应用程序的企业或个人开发者而言,“DeepSeek”开源大型语言模型加上 “Dify” 平台可能是不错的选择之一。“DeepSeek” 提供强大的自然语言理解和生成能力,而 “Dify” 则专注于简化从零开始创建定制化解决方案的过程,包括但不限于训练专有领域内的语料素材、调整超参数配置直至最终发布上线等一系列环节[^3]。 值得注意的是,虽然该路径降低了进入门槛,但仍需投入必要的时间精力深入研究相关理论基础才能充分发挥其潜力价值所在。 #### 4. 私人订制版 RAG 架构详解 当目标转向打造高度专业化且安全可靠的内部交流平台时,则有必要考虑引入更加完善的体系框架—即所谓的“专属 RAG”。此类系统通常围绕以下几个方面展开建设: - 数据采集阶段注重筛选高质量原始资料来源; - 文档解析部分则负责把获取来的材料转化为可供索引使用的片段单元; - 向量化表示步骤旨在建立高效的相似度匹配算法以便迅速定位最佳候选答案选项; - 结果呈现最后一步则是综合考量多种因素之后给出最合适的回应建议给终端使用者[^4]. 以上每一步都需要精心规划实施细节, 才能确保整体效果达到预期标准. ```python import pymongo from langchain import PromptTemplate, LLMChain from transformers import pipeline def initialize_mongodb(): client = pymongo.MongoClient("mongodb://localhost:27017/") db = client["knowledge_base"] collection = db["documents"] return collection collection = initialize_mongodb() nlp_qa = pipeline('question-answering') template = """Question: {question} Context:{context}""" prompt = PromptTemplate(template=template, input_variables=["question", "context"]) llm_chain = LLMChain(prompt=prompt, llm=nlp_qa) query_result = list(collection.find({"$text": {"$search": "example query"}})) if query_result: context = ' '.join([doc['content'] for doc in query_result]) response = llm_chain.run(question="What is the answer?", context=context) else: response = "No relevant information found." print(response) ``` 上述代码展示了如何初始化 MongoDB 数据库并与 Hugging Face Transformers 库相结合来进行基本 Q&A 功能示范。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夕阳也是醉了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值