万物互联
上大学时,学习高等数学、线性代数,觉得so boring。学这些有什么用?直到某一刻我才发现,联想学习这些理论竟是如此「面白い」。
第一次感到有趣,是当我发现矩阵乘法和几何旋转扯上关系的时候。为什么这么有意思的关联竟然在高等数学快毕业的时候才让我们get到?如果我早点意识到,或许数学课就不会在睡觉中度过了。
记得大二时学信号分析与处理,什么时域、频域的,一头雾水,学这个拿来干什么呢?直到接触了语音识别、图神经网络中的基于谱的卷积,才发现原来傅立叶变换无非就是把同一个东西放在不同的空间进行表示,只不过频域这个空间具有最有用的特征(正弦波),可以表示为一系列矩形波的叠加。
说到矩形波的叠加,可以联想到神经网络中的relu激活函数。其实最开始的时候激活函数采用的时候是sigmoid,而relu函数就可以理解为一系列sigmoid函数的叠加。
先前说傅立叶变换无非就是变换了事物的表征空间,那么她又和线代中的基变换联系上了。什么单位正交基,什么施密特正交化,一系列概念都和维度变换纠缠上了。
其实维度变换通俗点讲,就是一件事情你搞不定时,一定要跳出现有思维定势,换个思路想问题,突然,微观数学问题一下又和宏观逻辑思维扯上关系了。所以,千万别孤零零地去学东西理解问题,多发散一下吧!