剑指offer--第29天

这篇博客探讨了两种动态规划的应用:正则表达式匹配问题和计算丑数。在正则表达式匹配中,通过状态转移方程实现了字符串与模式的匹配;而在计算丑数中,使用了三个指针p1, p2, p3来跟踪乘以2, 3, 5的元素位置,确保不重复计算。这两个问题都展示了动态规划在解决复杂计算问题上的效率。
摘要由CSDN通过智能技术生成

面试题19. 正则表达式匹配
根据当前字符是‘*’或其他字符进行分类
状态转移方程

if(p[i-1]=='*')
	if(p[i-2]==s[i-1]||p[i-2]=='.')//如果p[i-2]==s[i-1],说明当前的*可以重复前面的字符,从而使当前字符匹配
		dp[i][j]=dp[i-1][j];
	dp[i][j]|=dp[i][j-2];//直接获取前两位的状态,因为可以*可以让之前的字符出现0次
else
	if(p[i-1]==s[i-1]||p[i-1]=='.')//当前不为*时,就只能单个字符匹配,直接获取两个字符串的前一个字符的匹配结果
		dp[i][j]=dp[i-1][j-1];

总代码

class Solution {
public:
    bool isMatch(string s, string p) {
        int n=s.size();
        int m=p.size();
        bool dp[n+2][m+2];
        memset(dp,0,sizeof dp);
        dp[0][0]=true;
        for(int i=0;i<=n;i++){
            for(int j=0;j<=m;j++){
                if(j==0){
                    if(i==0) dp[i][j]=true;
                    else dp[i][j]=false;
                }
                else{
                    if(p[j-1]=='*'){
                        if(i>=1&&j>=2&&(p[j-2]==s[i-1]||p[j-2]=='.'))
                            dp[i][j]=dp[i-1][j];
                        if(j>=2) dp[i][j]|=dp[i][j-2];
                    }
                    else{
                        if(i>=1&&(p[j-1]==s[i-1]||p[j-1]=='.'))
                        dp[i][j]=dp[i-1][j-1];
                    }
                }
            }
        }
        return dp[n][m];
    }
};

剑指 Offer 49. 丑数
用p1,p2,p3分别记录乘2,乘3,乘5的元素的位置,取得的最小值就是当前的位置的丑数,同时,如果p1,p2,p3分别乘2,乘3,乘5等于这个丑数,我们就需要将此时的下标往后推,避免出现重复

class Solution {
public:
    int nthUglyNumber(int n) {
        int dp[n+4];
        dp[1]=1;
        int p1=1,p2=1,p3=1;
        int mmin=INT_MAX;
        for(int i=2;i<=n;i++){
            mmin=min(dp[p1]*2,min(dp[p2]*3,dp[p3]*5));
            if(mmin==dp[p1]*2) p1++;
            if(mmin==dp[p2]*3) p2++;
            if(mmin==dp[p3]*5) p3++;
            dp[i]=mmin;
        }
        return dp[n];
    }
};

剑指 Offer 60. n个骰子的点数
附代码,二刷再写

class Solution {
public:
    vector<double> dicesProbability(int n) {
        vector<double>dp(6,1.0/6.0);
        for(int i=2;i<=n;i++){
            vector<double>p(5*i+1,0);
            for(int j=0;j<dp.size();j++){
                for(int k=0;k<6;k++){
                    p[j+k]+=dp[j]/6.0;
                }
            }
            dp=p;
        }
        return dp;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值