算法基础13 —— 树进阶(优先队列的应用—合并果子 + 哈夫曼树)

本文深入探讨了堆的性质与应用,如合并果子问题,通过建立小根堆实现贪心算法求解最小体力值。同时介绍了哈夫曼树的概念,包括带权路径长度、构建过程及其在数据压缩中的作用。通过实例展示了如何构造哈夫曼树并计算带权路径长度。
摘要由CSDN通过智能技术生成
堆的应用

虽然可以把堆画成二叉树的形式,但是其本质依然是一维数组
拓展:树状数组也可以画成树的形式,它与堆一样,本质依然是一个一维数组

堆的例题:NOIP 2004 合并果子
非常妙的一道例题,即是堆,也是贪心
分析:
假设目前有四堆果子分别是2、3、5、6。
合并果子方案一:
如果先将2与3合并,会耗费体力值5;
再将5与6合并,会耗费体力值11;
最后将5与11合并,会耗费体力值16;
采取以上合并方案,一共需要耗费体力5 + 11 + 16 = 32

合并果子方案二:
先将耗费体力最小的2与3合并,会耗费体力值5;
再选择耗费体力最小的5与5合并,会耗费体力值10;
最后将10与6合并,会耗费体力值16;
采取以上合并方案,一共需要耗费体力5 + 10 + 16 = 31

还可以继续列举其他方案,但是会发现只有第二种方案最节省体力…
解题思路:每次寻找耗费体力最小的两个堆合并即可(贪心的思想)
解题步骤:

  • 建立小根堆
  • 取出堆顶元素(最小值a)
  • 再执行一次以上操作(再取出一个最小值b)
  • 将两次取出的最小值相加得到sum,先将sum加入答案之中,然后再将sum入堆
  • 依次循环,得出本题的最小体力值

AC代码:

#include <iostream>
#include <cstdio>
using namespace std;

const int N = 10010;
int heap[N];
int heapSize;
int n;

void put(int d)//建堆模板
{
	int now,next;
	heap[++heapSize] = d;
	now = heapSize;
	while (now > 1)
	{
		next = now >> 1;
		if (heap[now] >= heap[next]) break;
		else swap(heap[now],heap[next]);
		now = next;
	}
}

int get()//取出堆顶元素
{
	int now = 1,res = heap[1];
	int next;
	heap[1] = heap[heapSize];
	heapSize --;
	while (now * 2 <= heapSize)
	{
		next = now * 2;
		if (next < heapSize && heap[next + 1] < heap[next]) next++;
		if (heap[now] <= heap[next]) break;
		else swap(heap[now],heap[next]);
		now = next;
	}
	return res;
}


int main()
{
    int x;
    cin >> n;
    //O(nlogn)
    for (int i = 1;i <= n;i++)//O(n)
    {
        scanf("%d",&x); 
        put(x);//O(logn)
    }
    int ans = 0;
    //O(2nlogn)
    for (int i = 1;i < n;i++) //n堆果子只需要合并n - 1次即可 O(n)
    {
        int a = get();//O(logn)
        int b = get();//O(logn)
        ans += (a + b);
        put(a + b);
    }
    printf("%d",ans);
    return 0;
}

代码整体时间复杂度:O(nlogn)

STL之优先队列priority_queue

合并果子写法二:使用STL

  • priority_queue <int> q;
    建立大根堆,每次取出堆顶元素为最大值
  • priority_queue<int, vector<int>,greater<int> > q;
    建立小根堆,每次取出的堆顶元素为最小值

基本操作:
q.empty() — 如果队列为空返回真
q.pop() — 出队,删除队首元素(删除后会自动调整为堆)
q.push() — 入队,加入一个元素(加入会自动调整为堆)
q.size() — 返回优先队列中拥有的元素个数
q.top() — 返回优先队列中队首元素(一般为最大值或最小值)

AC代码:

#include <iostream>
#include <queue>

using namespace std;

int main()
{
    priority_queue<int,vector<int>,greater<int> > q;//小根堆
    int ans = 0;//存储答案
    int n;
    cin >> n;
    for (int i = 1;i <= n;i++)
    {
        int x;
        cin >> x;
        q.push(x);
    }
    //时间复杂度O(nlogn)
    for (int i = 1;i < n;i++)
    {
        int a = q.top();
        q.pop();
        int b = q.top();
        q.pop();
        ans += (a + b);
        q.push(a + b);
    }
    cout << ans << endl;
    return 0;
}
哈夫曼树 (HUFUMAN TREE)

学习哈夫曼树,需要先知道什么是树的带权路
树的带权路径长度:树中所有叶子结点的带权路径长度之和,通常记作:
在这里插入图片描述
其中,n表示叶子结点的数目,Wi和Li分别表示叶子结点Ki的权值和树根结点到叶子结点Ki之间的路径长度。
在这里插入图片描述

例如:对于上图的二叉树,其叶子结点为3、4、5号结点。
3号结点到根结点的路径为1
4号结点到根结点的路径为2
5号结点到根结点的路径为2
故树的带权路径长度WPL = 1x2 + 2x2 + 4x1 = 10

哈夫曼树的定义:
由权值为W1,W2,…,Wn的n个叶子结点所构成的所有二叉树中,带权路径长度WPL最小的那棵二叉树被称为哈夫曼树或最优二叉树。

哈夫曼树的构造(算法)
1.根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为Wi的根结点,其左右子树为空
2.在F中选取两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为左右子树根结点的权值之和
3.在F中删除这两棵树,同时将新的二叉树加入F中
4.重复2、3,直到F只含有一棵树为止.(得到哈夫曼树)
哈夫曼树不是唯一的(形态多样),但是哈夫曼树的WPL一定唯一(最小)

例1:有4 个结点 a、b、c、d,权值分别为 7、5、2、4,构造哈夫曼树
在这里插入图片描述

例2:假设给定a、b、c、d、e、f的权值分别为{9,12,6,3,5,15},试构造一棵哈夫曼树并算出该树的带权路径长WPL
在这里插入图片描述
这棵哈夫曼树的WPL为:WPL = (9 + 12 + 15) x 2 + 6 x 3 + (3 + 5) x 4 = 122

关于哈夫曼树的注意点:
1、满二叉树、完全二叉树都不一定是哈夫曼树,哈夫曼树也不一定是满二叉树或者完全二叉树
2、哈夫曼树中权越大的叶子离根越近(如果权值大,距离根结点的路径也大,那么WPL一定也很大)
3、具有相同带权结点的哈夫曼树不惟一
4、哈夫曼树的结点的度数为0或2,没有度为1的结点(考研初试性质)
5、包含 n 个叶子结点的哈夫曼树中共有 2n – 1 个结点(考研初试性质)
6、包含 n 棵树的森林要经过 n–1 次合并才能形成哈夫曼树,共产生 n–1 个新结点

有兴趣的同学可以网上查阅哈夫曼树的代码实现(代码长,非重点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值