【多任务学习】PLE模型

模型提出

PLE模型的提出是为了解决多任务学习中的“负迁移”和“跷跷板板现象”。负迁移是指任务之间的相关性降低,会造成多任务学习的表现不增反降;跷跷板现象是指在多任务学习中一个任务的性能提升往往伴随另一个任务的性能下降。

模型结构

PLE模型的基础结构是CGC网络,通过堆叠多层CGC网络,构成PLE模型。

CGC网络结构如下:

CGC网络由“任务特定的专家网络”和“任务共享的专家网络”构成,任务特定的专家网络和任务共享的专家网络都可以包含多个专家。专家之间的输出通过门控单元结合。通过每个任务的任务塔进行预测。

PLE模型结构如下:

PLE模型由多层CGC网络构成,下一层任务特定的专家网络的输入是上一层任务特定的专家网络和上一层任务共享的专家网络的输出。

和MMOE的对比

可以看到MMOE模型任务塔的输入是所有专家的网络的集合,并没有区分任务特定的专家网络和任务共享的专家网络,PLE模型通过区分各个任务的输入,降低了训练时任务之间的影响,有效缓解了负迁移和跷跷板现象。

实验效果数据

多任务模型之间的对比:

PLE模型取得了优于MMOE的效果。

跷跷板现象分析:

MMOE在多任务学习中存在跷跷板现象,而PLE模型对两个任务均有提升。

专家网络利用率:

MMOE模型在不同任务中,每个专家利用比例相似,说明专家并没有对每个任务进行很好的区分。而PLE模型每个专家利用比例不同,对每个专家进行了有效利用。

附加改进:损失函数

PLE模型在多任务学习的损失函数上进行了两点改进。

1. 多任务学习常见的损失函数是多个任务的损失函数加权求和,但是每个任务的样本空间不同,所以每个任务只需在每个任务的样本空间上计算损失。δ表示样本i是否属于任务k的样本空间,为01变量。

2. 不同的训练阶段,每个任务的权重会发生变化,所以设置了两个超参,w表示任务k的权重,γ表示任务k在阶段t的系数。

参考文献

[1]. Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations(RecSys 2020)

<think>好的,用户的问题只有一个词“ple”,看起来不太明确。首先需要确定用户的具体意图是什么。可能的情况包括: 1. **PLE作为缩写**:查找可能的缩写含义。常见的有Programming Language Environment(编程语言环境)、Primary Leaving Examination(小学毕业考试,乌干达)、Public Legal Education(公共法律教育)等。 2. **拼写错误或简写**:可能是“please”的简写,但需要确认。 3. **特定领域的术语**:比如医学中的PLE(Protein-Losing Enteropathy,蛋白丢失性肠病),或者科技中的其他术语。 接下来进行网络搜索,验证这些可能性: - **缩写查询**:搜索显示PLE常见缩写包括编程环境、乌干达考试、公共法律教育、医学中的蛋白丢失性肠病。 - **用户可能需求**:由于用户未明确意图,需要覆盖多个可能领域,并提供进一步澄清的建议。 根据搜索结果,整理各领域的解释,并提醒用户提供更多上下文。最后生成相关问题,引导用户明确需求,如询问具体领域、考试信息或医学术语等。</think>根据"ple"的不同领域含义,整理以下常见解释: **1. 教育领域(乌干达)** Primary Leaving Examination(PLE)是乌干达小学毕业考试,通常在小学7年级结束时进行。考试科目包含英语、数学、科学和社会研究,通过该考试是进入中学的必要条件。 **2. 医学领域** Protein-Losing Enteropathy(PLE)指蛋白丢失性肠病,临床表现为低蛋白血症、水肿和免疫功能异常。常见病因包括克罗恩病、肠道淋巴管扩张症等,诊断需结合粪便α1-抗胰蛋白酶检测和影像学检查。 **3. 计算机科学** Programming Language Environment(PLE)指特定编程语言的开发环境。例如Python PLE可能包含解释器、标准库和调试工具,Java PLE通常包含JDK、IDE和构建工具。 **4. 法律领域** Public Legal Education(PLE)是通过普法宣传提升公民法律意识的活动形式,包括法律知识讲座、在线法律问答平台和社区法律咨询服务等模式。 $$ \text{医学诊断公式示例:血清白蛋白浓度} = \frac{\text{总蛋白量}}{\text{血浆体积}} \quad (g/dL) $$ ```python # 计算PLE患者白蛋白下降速率的示例代码 def albumin_decline_rate(initial, final, days): return (initial - final) / days print(f"每日下降率:{albumin_decline_rate(3.5, 2.8, 7):.2f} g/dL/day") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值