实变函数 第一章 集合论

0 实数系完备性定理

0.1 稠密性与完备性

稠密性:
两个不同数之间总存在第三个数,如有理数、无理数、实数都具有稠密性.

完备性(连续性):
两个不同数之间不存在第三个数,如实数.
Tips: 完备未必稠密,如自然数集,康托尔三分集等.

0.2 七个等价的实数系完备性定理

聚点定理

有限覆盖定理


1 集合理论

1.1 集合关系与运算

含于 (类比 “ ⩽ \leqslant ” )真含于 (类比 “ < < <”)
⊆ \subseteq ⊂ \subset
⊆ \subseteq ⊊ \subsetneq
⫅ \subseteqq ⫋ \subsetneqq
交 (且,对于所有)并 (或,存在)
∩ \cap ∪ \cup
∧ \wedge ∨ \vee
∀ \forall ∃ \exists

子集

A A A (真)含于 B B B ⇔ \Leftrightarrow B B B (真)包含 A A A ⇔ \Leftrightarrow A A A B B B的 (真)子集”

∀   a ∈ A : a ∈ B ⇔ A ⊆ B A ⊆ B ∧ A ≠ B ⇔ A ⊂ B \begin{align*} \forall\ a\in A:a\in B &\Leftrightarrow A \subseteq B \\ A\subseteq B\wedge A\ne B &\Leftrightarrow A\subset B \end{align*}  aA:aBABA=BABAB

并集
A ∪ B = { x : x ∈ A ∨ x ∈ B } ⋃ α ∈ Λ A α = { x : ∃ k ∈ Λ ,   s . t .   x ∈ A α } \begin{align*} A\cup B&=\{x:x\in A\vee x\in B\} \\\bigcup_{\alpha\in\Lambda}A_\alpha&=\{x:\exists k\in\Lambda,\ \mathrm{s.t.}\ x\in A_\alpha\} \end{align*} ABαΛAα={x:xAxB}={x:kΛ, s.t. xAα}

交集
A ∩ B = { x : x ∈ A ∧ x ∈ B } ⋂ α ∈ Λ A k = { x : ∀ k ∈ Λ , x ∈ A α } A\cap B=\{x:x\in A \wedge x\in B\} \\\bigcap_{\alpha\in\Lambda}A_k=\{x:\forall k\in\Lambda,x\in A_\alpha\} AB={x:xAxB}αΛAk={x:kΛ,xAα}

差集
A \ B = A ∩ B c = { x : x ∈ A ∧ x ∉ B } \begin{align*} A\backslash B&=A\cap B^c \\&=\{x:x\in A \wedge x\notin B \} \end{align*} A\B=ABc={x:xAx/B}

余集(补集)
A c = R \ A = R − A = { x : x ∈ R ∧ x ∉ A } \begin{align*} A^c&=\R\backslash A=\R-A \\&=\{x:x\in \R \wedge x\notin A\} \end{align*} Ac=R\A=RA={x:xRx/A}

直积(笛卡尔积)
A × B = { ( a , b ) : a ∈ A ∧ b ∈ B } A\times B=\{(a,b):a\in A\wedge b\in B\} A×B={(a,b):aAbB}

交换律
A ∪ B = B ∪ A A ∩ B = B ∩ A A\cup B=B\cup A \\A\cap B=B\cap A AB=BAAB=BA

结合律
A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A\cup(B\cup C)=(A\cup B)\cup C \\A\cap(B\cap C)=(A\cap B)\cap C A(BC)=(AB)CA(BC)=(AB)C

分配律
A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A\cap(B\cup C)=(A\cap B)\cup(A\cap C) A(BC)=(AB)(AC)

德摩根(De Morgan)律
( ⋃ α ∈ Λ A α ) c = ⋂ α ∈ Λ A α c ( ⋂ α ∈ Λ A α ) c = ⋃ α ∈ Λ A α c \left(\bigcup_{\alpha\in\Lambda} A_\alpha\right)^c=\bigcap_{\alpha\in\Lambda}A_\alpha^c \\\left(\bigcap_{\alpha\in\Lambda} A_\alpha\right)^c=\bigcup_{\alpha\in\Lambda}A_\alpha^c (αΛAα)c=αΛAαc(αΛAα)c=αΛAαc

1.2 映射

X , Y X,Y X,Y 为两个非空集合,若存在一种对应法则 f f f,使得每个 x ∈ X x\in X xX 都有唯一的 y ∈ Y y\in Y yY 与之对应,则称 f f f X X X Y Y Y 的一个映射,记为
f :   X   → Y ∀ x   ↦ ∃ !   y = f ( x ) \begin{aligned} f: \ X \ &\to Y \\ \forall x \ &\mapsto \exists!\ y=f(x) \end{aligned} f: X x Y! y=f(x)

y = f ( x ) y=f(x) y=f(x) x x x 在映射 f f f 下的 x x x y y y原像

X X X定义域 I m f = f ( X ) = { f ( x ) : x ∈ X } \mathrm{Im}f=f(X)=\{f(x):x\in X\} Imf=f(X)={f(x):xX}值域像集 ⊆ Y \subseteq Y Y陪域.

  1. I m f = f ( X ) = Y \mathrm{Im}f=f(X)=Y Imf=f(X)=Y,则映射为满射
  2. ∀ x 1 , x 2 ∈ X , x 1 ≠ x 2 : f ( x 1 ) ≠ f ( x 2 ) \forall x_1,x_2\in X,x_1\ne x_2:f(x_1)\ne f(x_2) x1,x2X,x1=x2:f(x1)=f(x2),则称映射为单射
  3. 若即为单射又为满射称双射,又称 一 一映射
  4. 映射 f : X → Y f:X\to Y f:XY 为双射 ⇔ \Leftrightarrow 存在逆映射 f − 1 f^{-1} f1
  5. f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:XY,g:YZ,则复合映射
    g ∘ f : X → Z x   ↦   z = g ( f ( x ) ) \begin{aligned} g\circ f:X &\to Z \\ x\ &\mapsto\ z=g(f(x))\end{aligned} gf:Xx Z z=g(f(x)).

1.3 集的基数与对等

1.3.1 等势

若存在一个由集合 X X X Y Y Y 的双射,则称 X X X Y Y Y 对等(亦称等势),记为 X ∼ Y X\sim Y XY,规定空集 Φ ∼ Φ \Phi\sim\Phi ΦΦ.

对等关系是一种等价关系,满足反身性: X ∼ X X\sim X XX对称性: X ∼ Y ⇒ Y ∼ X X\sim Y\Rightarrow Y \sim X XYYX传递性: X ∼ Y ∼ Z ⇒ X ∼ Z X\sim Y\sim Z\Rightarrow X\sim Z XYZXZ.

元素相等的两个有限集对等.

无限集存在一个真子集与之对等. 如:正整数集与偶数集

0 0 0 (空集 Φ \Phi Φ的势/基数) < n <n <n (n元有限集的势,或称基数, n ∈ N + n\in\N^+ nN+) < ℵ 0 <\aleph_0 <0 (可列集的势,读作阿列夫零) < ℵ <\aleph < (无限集的势,读作阿列夫)

1.3.2 康托尔-伯恩斯坦-施罗德定理

Cantor-Bernstein-Schroeder \text{Cantor-Bernstein-Schroeder} Cantor-Bernstein-Schroeder 定理

A , B ≠ Φ A,B\neq \Phi A,B=Φ, A ∼ B A\sim B AB 的一个子集, B ∼ A B\sim A BA 的一个子集,则 A ∼ B A\sim B AB.

A = ⩽ B =   ,   A = ⩾ B =   ⇒   A = = B = \overset{=}A \leqslant \overset{=}B\ ,\ \overset{=}A \geqslant \overset{=}B\ \Rightarrow\ \overset{=}A=\overset{=}B A=B= , A=B=  A==B=

1.4 有限集与可列集

有限集: n n n 个元素, n n n 为非负整数,即与集合 { 1 , 2 , ⋯   , n } \{1,2,\cdots,n\} {1,2,,n}对等;否则为无限集.

可数集(又称可列集): 无限集元素能按照某种规律排成一个序列;与自然数集 N \mathbb N N 对等;否则为不可列集.

至多可数集: 有限集与可列集的统称.

1.5 集合语言描述

f f f 是定义在 E E E 上的函数

f ( E ) = { f ( x ) : x ∈ E } f(E)=\{f(x):x\in E\} f(E)={f(x):xE}


f f f 是定义在 R \mathbb{R} R 上的函数,在 [ a , b ] [a,b] [a,b] 有上界 M M M,即 ∀ x ∈ [ a , b ] : f ( x ) ⩽ M \forall x\in [a,b]:f(x)\leqslant M x[a,b]:f(x)M

[ a , b ] ⊆ { x : f ( x ) ⩽ M } [a,b]\subseteq \{x:f(x)\leqslant M\} [a,b]{x:f(x)M}


f f f R \mathbb{R} R 上连续,取定 x 0 ∈ R x_0\in\mathbb{R} x0R,即 ∀ ε > 0 , ∃ δ > 0 , s . t . x ∈ ( x 0 − δ , x 0 + δ ) , ∣ f ( x ) − f ( x 0 ) ∣ < ε \forall \varepsilon >0,\exists \delta >0,\mathrm{s.t.} x\in (x_0-\delta,x_0+\delta),|f(x)-f(x_0)|<\varepsilon ε>0,δ>0,s.t.x(x0δ,x0+δ),f(x)f(x0)<ε

( x 0 − δ , x 0 + δ ) ⊆ { x : ∣ f ( x ) − f ( x 0 ) ∣ < ϵ } (x_0-\delta,x_0+\delta)\subseteq \{x:|f(x)-f(x_0)|<\epsilon\} (x0δ,x0+δ){x:f(x)f(x0)<ϵ}
f ( ( x 0 − δ , x 0 + δ ) ) ⊆ ( f ( x 0 ) − ε , f ( x 0 ) + ϵ ) f((x_0-\delta,x_0+\delta))\subseteq (f(x_0)-\varepsilon,f(x_0)+\epsilon) f((x0δ,x0+δ))(f(x0)ε,f(x0)+ϵ)


f f f R \mathbb{R} R 定义,在 R \mathbb{R} R 有上界 M M M

R = { x : f ( x ) ⩽ M } = { x : f ( x ) ⩽ M + 1 } \mathbb{R}=\{x:f(x)\leqslant M\}=\{x:f(x)\leqslant M+1\} R={x:f(x)M}={x:f(x)M+1}


( a , b ) = ⋃ n = 1 ∞ [   a + 1 n , b − 1 n   ] \displaystyle (a,b)=\bigcup\limits_{n=1}^{\infty}[\ a+\frac{1}{n},b-\frac{1}{n}\ ] (a,b)=n=1[ a+n1,bn1 ]

Proof: \color{blue}\textbf{Proof:} Proof:

L H S ⊂ R H S : LHS \subset RHS: LHSRHS:
∀ x ∈ ( a , b ) , x − a > 0 , b − x > 0 \forall x\in (a,b),x-a>0,b-x>0 x(a,b),xa>0,bx>0
∃ n ∈ N , s . t .   1 n < min ⁡ { x − a , b − x } \exists n\in\mathbb{N},\mathrm{s.t.}\ \frac{1}{n}<\min\{x-a,b-x\} nN,s.t. n1<min{xa,bx}
x ∈ [ a − 1 n , b + 1 n ] x\in [a-\frac{1}{n},b+\frac{1}{n}] x[an1,b+n1]

R H S ⊂ L H S : RHS \subset LHS: RHSLHS:
∀ x ∈ ⋃ n = 1 ∞ [ a + 1 n , b − 1 n ] , ∃ n ∈ R , s . t . x ∈ [ a − 1 n , b + 1 n ] ⊆ ( a , b ) \forall x\in \bigcup\limits_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}],\exists n\in\mathbb{R},\mathrm{s.t.}x\in [a-\frac{1}{n},b+\frac{1}{n}]\subseteq (a,b) xn=1[a+n1,bn1],nR,s.t.x[an1,b+n1](a,b)


⋃ λ ∈ Λ A λ = { x : ∃ x ∈ Λ , s . t .   x ∈ A λ } ⋂ λ ∈ Λ A λ = { x : ∀ x ∈ Λ : x ∈ A λ } \begin{aligned} {\color{red}\bigcup\limits_{\lambda\in\Lambda}}A_{\lambda}&=\{x:{\color{red}\exists} x\in\Lambda,\mathrm{s.t.\ }x\in A_{\lambda}\} \\{\color{red}\bigcap\limits_{\lambda\in\Lambda}}A_{\lambda}&=\{x:{\color{red}\forall} x\in\Lambda :x\in A_{\lambda}\} \end{aligned} λΛAλλΛAλ={x:xΛ,s.t. xAλ}={x:xΛ:xAλ}

eg1:
{ f n ( x ) } \{f_n(x)\} {fn(x)} 为定义在 E E E 上的函数列,若 x ∈ E ,   { f n ( x ) } x\in E,\ \{f_n(x)\} xE, {fn(x)} 有界 ⇔ ∃ M > 0 ,   s . t .   ∀ n ∈ N : ∣ f n ( x ) ∣ ⩽ M \Leftrightarrow \exists M>0,\ \mathrm{s.t.}\ \forall n\in\mathbb{N}:|f_n(x)|\leqslant M M>0, s.t. nN:fn(x)M
⇔ ⋃ M ∈ R + ⋂ n = 1 ∞ { ∣ f n ( x ) ∣ ⩽ M } \Leftrightarrow\displaystyle\bigcup\limits_{M\in\mathbb{R^+}}\bigcap\limits_{n=1}^{\infty}\{|f_n(x)|\leqslant M\} MR+n=1{fn(x)M}

eg2:
{ f n ( x ) } \{f_n(x)\} {fn(x)} E E E 上的函数列, x x x 使 f n ( x ) {f_n(x)} fn(x) 收敛于 0 0 0 的点,即
∀ ε > 0 , ∃ N ∈ N , s . t . ∀ n ⩾ N : ∣ f n ( x ) ∣ < ε   ⇔   ⋂ ε ∈ R + ⋃ N ∈ N ⋂ n ⩾ N { ∣ f n ( x ) ∣ < ε } \forall \varepsilon >0,\exists N\in\mathbb{N},\mathrm{s.t.}\forall n\geqslant N:|f_n(x)|<\varepsilon\ \\ \Leftrightarrow\ \displaystyle\bigcap\limits_{\varepsilon\in\mathbb{R^+}}\bigcup\limits_{N\in\mathbb{N}}\bigcap\limits_{n\geqslant N}\{|f_n(x)|<\varepsilon\} ε>0,NN,s.t.nN:fn(x)<ε  εR+NNnN{fn(x)<ε}

{ x : lim ⁡ n → ∞ f n ( x ) ≠ 0   o r   ∄ } = D e   M o r g a n ⋃ ε ∈ R + ⋂ N ∈ N ⋃ n ⩾ N { ∣ f n ( x ) ∣ ⩾ ε } \{x:\lim\limits_{n\to\infty}f_n(x)\ne 0\ or\ \nexists\}\xlongequal{De\ Morgan}\displaystyle\bigcup\limits_{\varepsilon\in\mathbb{R^+}}\bigcap\limits_{N\in\mathbb{N}}\bigcup\limits_{n\geqslant N}\{|f_n(x)|\geqslant\varepsilon\} {x:nlimfn(x)=0 or }De Morgan εR+NNnN{fn(x)ε}

1.6 集合列的上下极限

数列的上下极限:

l i m ‾ ⁡ n → ∞ a n = lim sup ⁡ n → ∞ a n = lim ⁡ n → ∞ sup ⁡ k ≥ n { a k } = inf ⁡ n ≥ 1 sup ⁡ k ≥ n { a k } l i m ‾ ⁡ n → ∞ a n = lim inf ⁡ n → ∞ a n = lim ⁡ n → ∞ inf ⁡ k ≥ n { a k } = sup ⁡ n ≥ 1 inf ⁡ k ≥ n { a k } \begin{aligned} &\varlimsup_{n\to\infty}a_n=\limsup\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}\sup\limits_{k\ge n}\{a_k\}=\inf\limits_{n\ge 1}\sup\limits_{k\ge n}\{a_k\} \\ &\varliminf_{n\to\infty}a_n=\liminf\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}\inf\limits_{k\ge n}\{a_k\}=\sup\limits_{n\ge 1}\inf\limits_{k\ge n}\{a_k\} \end{aligned} nliman=nlimsupan=nlimknsup{ak}=n1infknsup{ak}nliman=nliminfan=nlimkninf{ak}=n1supkninf{ak}

集合列上下极限:
lim sup ⁡ n → ∞ A n = inf ⁡ n ≥ 1 sup ⁡ k ≥ n { A k } = ⋂ n ≥ 1 ⋃ k ≥ n A k lim inf ⁡ n → ∞ A n = sup ⁡ n ≥ 1 inf ⁡ k ≥ n { A k } = ⋃ n ≥ 1 ⋂ k ≥ n A k \limsup\limits_{n\to\infty}A_n=\inf\limits_{n\ge 1}\sup\limits_{k\ge n}\{A_k\}=\bigcap_{n\ge 1}\bigcup_{k\ge n}A_k \\ \liminf\limits_{n\to\infty}A_n=\sup\limits_{n\ge 1}\inf\limits_{k\ge n}\{A_k\}=\bigcup_{n\ge 1}\bigcap_{k\ge n}A_k nlimsupAn=n1infknsup{Ak}=n1knAknliminfAn=n1supkninf{Ak}=n1knAk


  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值